MACHINE LEARNING APPLICATION: IMAGE PROCESSING

Author(s):  
Ayush Gupta

-In the current scenario of the data world, the data holds significant information if processed correctly. The data can be in the form of images which can prove to be a boon in deriving the useful insights from it in order to get the knowledge of things at an early stage itself. But the matter of concern is deriving the information from the images will be a tedious task for human beings and would incur a heavy cost and time. So, an easy and cheaper technique is to teach a machine efficiently to do the task for us. The concept of using Machines to do human tasks is known as Machine Learning. In this paper, I present various literature reviews regarding image processing in Machine learning and how image processing has helped in identifying the issues at early stages so that they can be resolved easily without causing much harm. Also, image processing has been a helpful tool in computer vision.

2018 ◽  
Vol 1 (1) ◽  
pp. 236-247
Author(s):  
Divya Srivastava ◽  
Rajitha B. ◽  
Suneeta Agarwal

Diseases in leaves can cause the significant reduction in both quality and quantity of agricultural production. If early and accurate detection of disease/diseases in leaves can be automated, then the proper remedy can be taken timely. A simple and computationally efficient approach is presented in this paper for disease/diseases detection on leaves. Only detecting the disease is not beneficial without knowing the stage of disease thus the paper also determine the stage of disease/diseases by quantizing the affected of the leaves by using digital image processing and machine learning. Though there exists a variety of diseases on leaves, but the bacterial and fungal spots (Early Scorch, Late Scorch, and Leaf Spot) are the most prominent diseases found on leaves. Keeping this in mind the paper deals with the detection of Bacterial Blight and Fungal Spot both at an early stage (Early Scorch) and late stage (Late Scorch) on the variety of leaves. The proposed approach is divided into two phases, in the first phase, it identifies one or more disease/diseases existing on leaves. In the second phase, amount of area affected by the disease/diseases is calculated. The experimental results obtained showed 97% accuracy using the proposed approach.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3691
Author(s):  
Ciprian Orhei ◽  
Silviu Vert ◽  
Muguras Mocofan ◽  
Radu Vasiu

Computer Vision is a cross-research field with the main purpose of understanding the surrounding environment as closely as possible to human perception. The image processing systems is continuously growing and expanding into more complex systems, usually tailored to the certain needs or applications it may serve. To better serve this purpose, research on the architecture and design of such systems is also important. We present the End-to-End Computer Vision Framework, an open-source solution that aims to support researchers and teachers within the image processing vast field. The framework has incorporated Computer Vision features and Machine Learning models that researchers can use. In the continuous need to add new Computer Vision algorithms for a day-to-day research activity, our proposed framework has an advantage given by the configurable and scalar architecture. Even if the main focus of the framework is on the Computer Vision processing pipeline, the framework offers solutions to incorporate even more complex activities, such as training Machine Learning models. EECVF aims to become a useful tool for learning activities in the Computer Vision field, as it allows the learner and the teacher to handle only the topics at hand, and not the interconnection necessary for visual processing flow.


2018 ◽  
Vol 30 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Zeinab Heidari ◽  
Mehrdad Dadgostar ◽  
Zahra Einalou

Breast cancer is one of the main causes of women’s death. Thermal breast imaging is one the non-invasive method for cancer at early stage diagnosis. In contrast to mammography this method is cheap and painless and it can be used during pregnancy while ionized beams are not used. Specialists are seeking new ways to diagnose the cancer in early stages. Segmentation of the breast tissue is one of the most indispensable stages in most of the cancer diagnosis methods. By the advancement of infrared precise cameras, new and fast computers and nouvelle image processing approaches, it is feasible to use thermal imaging for diagnosis of breast cancer at early stages. Since the breast form is different in individuals, image segmentation is a hard task and semi-automatic or manual methods are usual in investigations. In this research the image data base of DMR-IR has been utilized and a now automatic approach has been proposed which does not need learning. Data were included 159 gray images used by dynamic protocol (132 healthy and 27 patients). In this study, by combination of different image processing methods, the segmentation of thermal images of the breast tissues have been completed automatically and results show the proper performance of recommended method.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


Author(s):  
Osman Hürol Türkakın

Computer vision methods are wide-spread techniques mostly used for detecting cracks on structural components, extracting information from traffic flows, and analyzing safety in construction processes. In recent years, with increasing usage of machine learning techniques, computer vision applications are supported by machine learning approaches. So, several studies were conducted using machine learning techniques to apply image processing. As a result, this chapter offers a scientometric analysis for investigating current literature of image processing studies for civil engineering field in order to track the scientometric relationship between machine learning and image processing techniques.


Author(s):  
Savita N. Ghaiwat ◽  
Parul Arora

Cotton leaf diseases have occurred all over the world, including India. They adversely affect cotton quality and yield. Technology can help in identifying disease in early stage so that effective treatment can be given immediately. Now, the control methods rely mainly on artificial means. This paper propose application of image processing and machine learning in identifying three cotton leaf diseases through feature extraction. Using image processing, 12 types of features are extracted from cotton leaf image then the pattern was learned using BP Neural Network method in machine learning process. Three diseases have been diagnosed, namely Powdery mildew, Downy mildew and leafminer. The Neural Network classification performs well and could successfully detect and classify the tested disease.


Author(s):  
Neil Shah ◽  
Nandish Bhagat ◽  
Manan Shah

AbstractA crime is a deliberate act that can cause physical or psychological harm, as well as property damage or loss, and can lead to punishment by a state or other authority according to the severity of the crime. The number and forms of criminal activities are increasing at an alarming rate, forcing agencies to develop efficient methods to take preventive measures. In the current scenario of rapidly increasing crime, traditional crime-solving techniques are unable to deliver results, being slow paced and less efficient. Thus, if we can come up with ways to predict crime, in detail, before it occurs, or come up with a “machine” that can assist police officers, it would lift the burden of police and help in preventing crimes. To achieve this, we suggest including machine learning (ML) and computer vision algorithms and techniques. In this paper, we describe the results of certain cases where such approaches were used, and which motivated us to pursue further research in this field. The main reason for the change in crime detection and prevention lies in the before and after statistical observations of the authorities using such techniques. The sole purpose of this study is to determine how a combination of ML and computer vision can be used by law agencies or authorities to detect, prevent, and solve crimes at a much more accurate and faster rate. In summary, ML and computer vision techniques can bring about an evolution in law agencies.


2015 ◽  
Vol 22 (1) ◽  
pp. 154
Author(s):  
Thiago Teixeira Santos

In research and development (R&D), interactive computing environments are a frequently employed alternative for data exploration, algorithm development and prototyping. In the last twelve years, a popular scientific computing environment flourished around the Python programming language. Most of this environment is part of (or built over) a software stack named SciPy Stack. Combined with OpenCV’s Python interface, this environment becomes an alternative for current computer vision R&D. This tutorial introduces such an environment and shows how it can address different steps of computer vision research, from initial data exploration to parallel computing implementations. Several code examples are presented. They deal with problems from simple image processing to inference by machine learning. All examples are also available as IPython notebooks.


2020 ◽  
Vol 2 (3) ◽  
pp. 175-185
Author(s):  
Karrupusamy P.

In medical image processing, segmentation and extraction of tumor portion from brain MRI is a complex task. It consumes more time and human effort to differentiate the normal and abnormal tissue. Clinical experts need more time to provide accurate results, recent technology developments in image processing reduces the human effort and provides more accurate results which reduces time and death rates by identifying the issues in early stage itself. Machine learning based algorithms occupies a major role in bio medical image processing applications. The performance of machine learning models is in satisfactory levels, but it could be improved by introducing optimization in feature selection stage itself. The research work provides a hybrid manta ray foraging optimization for feature selection from brain tumor MRI images. Convolution neural network is used to test the optimized features and detects the early stage brain tumors. The experimental model is compared with existing artificial neural network, particle swarm optimization algorithm and acquires a better detection and classification accuracy.


Author(s):  
Anuraag Velamati Et.al

The world is quickly and continuously advancing towards better technological advancements that will make life quite easier for us, human beings [22]. Humans are looking for more interactive and advanced ways to improve their learning. One such dream is making a machine think like a computer, which lead to innovations like AI and deep learning [25]. The world is running at a higher pace in the domain of AI, deep learning, robotics and machine learning Using this knowledge and technology, we could develop anything right now [36]. As a part of sub-domain, the introduction of Convolution Neural Networks made deep learning extensively strong in the domain of image classification and detection [1]..The research that we have conducted is one of its kind. Our research used Convolution Neural Network, TensorFlow and Keras.


Sign in / Sign up

Export Citation Format

Share Document