scholarly journals SOME FACTORS AFFECTING PASTURE PRODUCTION IN SOUTHLAND

Author(s):  
W.H. Risk ◽  
T.E. Ludecke

The pattern of production from permanent pastures on two major soil groups in Southland and some factors affecting production are discussed. Production was shown to be lower on the summer droughtprone YGE/YBE intergrade soils compared with the wetter southern YBE. The major proportion (80%) of the production occurred in spring and summer. Grasses contributed two-thirds and white clover one-third of the annual production. Inadequate mineral nitrogen levels in soils over the spring result in seasonal responses to nitrogen fertilizers. The use of high rates of nitrogen fertilizer at regular intervals throughout the year increased total pasture production by about 25%. The clover cyst nematode was shown to reduce white clover establishment and production in field trials.

Author(s):  
C.F. Mercer ◽  
R.N. Watson ◽  
D.R. Woodfield

Breeding for improved resistance and tolerance to the clover root-knot nematode, Meloidogyne trifoliophila, and the clover cyst nematode, Heterodera trifolii , has been successful in white c lover, Trifolium repens. White clover lines developed from three independent breeding programmes were established in field trials at Lincoln, Palmerston North, Cambridge and Kerikeri. Plants were established in areas either untreated or treated with nematicide, so as to have contrasting pest loads on the plant material and evaluated for up to 4 years. Plant vigour was scored before each grazing at each site. Clover cyst nematode cysts were counted twice in Palmerston North and all nematodes were counted in stained roots on four occasions in Cambridge. Resistant lines from the clover cyst nematode programme performed better than susceptible lines and as well as most cultivars reflecting the high level of resistance developed in this glasshouse-based programme. This resistance was also reflected in the generally lower number of cysts counted under resistant lines from Palmerston North. The root-knot nematode resistant material performed better than the susceptible and as well as most cultivars. The tolerance selections, developed under field conditions, performed as well as, or better than the cultivars. The selections from the breeding programmes have exhibited strong agronomic potential across locations and years and the best material has been crossed, with progeny being assessed in current field trials. Keywords: Heterodera trifolii, Meloidogyne trifoliophila, nematode, pasture, resistance, tolerance, white clover


2022 ◽  
Vol 13 (1) ◽  
pp. 223-230
Author(s):  
Idrissa Diédhiou ◽  
Pedro Pérez Martínez ◽  
Emmanuel Martínez Castro ◽  
Wilson Geobel Ceiro-Catasú

Maize is the most important crop in Mexico, being central to the diets of consumers, particularly smallholders, and an undetermined amount is allocated as straw, green fodder, and, to a lesser extent, as silage for animal feed. Nitrogen fertilizer is considered one of the most important factors affecting growth, grain yield, and maize biomass production. In this context, the main objective of this study was to evaluate the effects of different levels of nitrogen fertilizer on maize production. A randomized complete block experimental design consisted of three treatments of nitrogen (180, 160, and 80 kg/ha) with three replications and morphological (plant height, stem thickness, and rate of growth), yield, and yield components (cob weight, length, thickness, number of rows per cob, and plant biomass) variables were used. The results suggest that the increase in nitrogen levels increases all the parameters of maize production. However, at 160 kg/ha, the greatest production of fodder was recorded with 5.99 tons/ha, superior to the one reported at 180 kg/ha, which was 5.47 tons/ha. We conclude that the maize fodder production can be optimized with the use of 160 kg/ha in the conditions of the altiplano of San Luis Potosí (Mexico).


2018 ◽  
Vol 166 ◽  
pp. 36-47 ◽  
Author(s):  
Karen M. Christie ◽  
Andrew P. Smith ◽  
Richard P. Rawnsley ◽  
Matthew T. Harrison ◽  
Richard J. Eckard

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 871
Author(s):  
Ivan Krga ◽  
Aleksandar Simić ◽  
Željko Dželetović ◽  
Snežana Babić ◽  
Snežana Katanski ◽  
...  

In limited growing conditions, intercropped field peas and oats can represent a significant source of forage rich in protein. If applied correctly, factors such as nitrogen fertilizer, the mowing phase, and sowing norms can significantly increase the productivity of these mixtures. Field trials were conducted to examine their productivity under different nitrogen levels (0, 40, 80 kg ha−1), different sowing norms/mixtures (field peas: oats—100:15%; 100:30%), and two stages of growth (full flowering, full pod formation). Nitrogen fertilizer and different sowing norms had a significant effect on the biomass, hay, and crude protein yields. On average, the highest hay yields were achieved with 80 kg ha−1 N (4.96 t ha−1), followed by 40 kg ha−1 N (4.27 t ha−1). The highest protein yields were achieved with 40 kg ha−1 N (CP—704.1 kg ha−1), followed by 80 kg ha−1 N (CP—637.6 kg ha−1). Sowing norm 100:30% achieved higher hay yields: 100:30%—4.82 t ha−1; 100:15%—4.44 t ha−1, while 100:15% achieved higher crude protein yields: 100:15%—730.4 kg ha−1; 100:30%—692.7 kg ha−1 on average. The costs were not significantly increased with the nitrogen fertilizer, but the net profits were increased by as much as 163%, depending on the nitrogen level and the mixture. Nitrogen fertilizer also achieves higher economic efficiency for the mixture 100:15% compared to the 100:30% mixture. Mixtures of field peas and oats outperform single-grown crops and provide cost-effective feed for a short time. Using optimal seed ratios and nitrogen fertilizer can significantly increase the productivity and profitability of the feed with minimal impact on the overall production costs.


Author(s):  
M.B. O'Connor ◽  
M.H. Gray

Soil fertility has a dominant influence on the productivity of many hill country pastures. In the Gisborne-East Coast hill country the dominant soil groups - the yellow-brown earths (YBEs) from mudstone/argillite and the yellow-brown pumice soils (YBPs) from Taupo pumice tephra - show variations in response to fertiliser inputs. Results from a series of eight field trials, commenced in 1980, indicate widespread phosphorus (P) deficiency across both groups with optimum Olsen P soil test values being calculated as 11.5 and 20.1 respectively. Sulphur deficiencies appear less important, in the short term, than previously thought. Lime (L) and molybdenum (MO) deficiencies appear widespread on YEEs with an indication on some sites that lime effects are over and above that due to increased MO availability. Potassium (KI is the dominant deficiency (after P) on YBPs. Element deficiencies in decreasing order of importance were - Y BEs, P > L/MO > S > K; Y BPS, P > K > S > L. Keywords: Fertilisers, hill country, pasture production.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 308
Author(s):  
Yang Yu ◽  
Chunrong Qian ◽  
Wanrong Gu ◽  
Caifeng Li

Improving nitrogen use efficiency is a significant scientific problem to be solved. Two maize hybrids JD27 (Jidan 27) and SD19 (Sidan 19) were selected to study the effects of nitrogen levels on root characteristic parameters and plant dry matter accumulation, distribution and transportation. We set five different nitrogen levels, which were nitrogen deficiency (000N), low nitrogen (075N), medium nitrogen (150N), high nitrogen (225N) and excessive nitrogen (300N). The results showed that the root length and root surface area of JD27 were significantly higher than those of SD19 under 075N. With the increase of nitrogen levels, the root difference among varieties gradually decreased. The root length, projection area, total surface area and total volume reached the maximum values at silking stage. The average root diameter kept stable or decreased slowly with the growth stage. The dry matter accumulation of JD27 was higher than that of SD19 at all growth stages. Increasing the amount of nitrogen fertilizer can promote the transport of dry matter to grain and improve dry matter transport efficiency after anthesis. Under the treatment of medium and high nitrogen fertilizer, maize was easy to obtain a higher yield, but excessive nitrogen fertilizer inhibited the increase of yield. This study provides theoretical and practical guidance for maize production techniques.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.


2018 ◽  
Vol 1 (2) ◽  
pp. 12-17
Author(s):  
Abubaker Haroun M.Adam ◽  
Mohammed Ahmed Taleim

The main objective of this study was to investigate the effects of 4 levels of Nitrogen (N) fertilizer (0, 25, 50 and 75 Kg N/fed) on some attributes of Sorghum (Sorghum bicolor L). This study was conducted in the farm of College of Agriculture, University of Bahri-Sudan; during the period 2014-2015. Where the soil is classified as saline with pH ranging from 7.5 -7.8. A randomized completely block designed (RCBD); with 3 replications and four (4) treatments was adopted. All recommended cultural practices were carried out timely. Data; pertaining some plant attributes were collected and analyzed. The result showed that the application of 75KgN/fed has increased both; the average number of leaves as well as the plant height compared to other levels of Nitrogen fertilizer including the control (Figure 1, Figure 2). For the average number of tillers concern, there is non -significant difference between all Nitrogen levels and average number of tillers (Figure 3). The study concluded that the Nitrogen fertilizer has variable effects on the studied agronomic characters, and the application of 75kgN/fed is the optimal level of fertilizer for improving the agronomic traits of Sorghum under Alkadaro conditions.


1961 ◽  
Vol 33 (1) ◽  
pp. 159-168
Author(s):  
Pentti Hänninen ◽  
Armi Kaila

Calcium nitrate and ammonium nitrate limestone (»Oulunsalpietari») were compared as the nitrogen fertilizer for oats in 15 field trials and for barley in one trial. The trials were carried out in summers 1959 and 1960 in various places in Finland. The split plot technique was employed in order to reduce the variation as much as possible. In 1959 the amounts of nitrogen applied as these two fertilizers to the corresponding halves of the plots were 25 and 50 kg/ha. In 1960 also higher applications were used: 75 and 100 kg/ha of N. In three trials these fertilizers were compared both as a surface dressing and worked in. Visual observations suggested about 5—6 weeks after sowing a darker green colour in the stands treated with calcium nitrate as compared with the other half treated with ammonium nitrate limestone. These differences later disappeared. In some trials a higher nitrogen content of the plants from the calcium nitrate stands could be demonstrated during this period. The uptake of nitrogen by plants was regularly followed throughout the growing period. Owing to the large variation, usually, no statistically significant difference between the effect of the fertilizers could be detected. In a few cases the superiority of calcium nitrate could be demonstrated. No differences in the ripening could be found. In most trials there was a fairly regular tendency to higher yields and higher nitrogen content in the grain and straw produced by calcium nitrate. Yet, only in a few cases were the differences statistically significant at the five per cent level. Thus, it was concluded that on the basis of the results of these trials ammonium nitrate limestone and calcium nitrate may be considered practically equal as nitrogen fertilizers for oats. There was no difference in the yields of barley produced by these two fertilizers, but the nitrogen content of grains was significantly lower with ammonium nitrate limestone than with calcium nitrate. This may be worth further study in connection with the production of malting barley.


Author(s):  
A.D. Black ◽  
R.J. Lucas

This experiment compared the productivity of caucasian or white clover when established with five perennial grass species over 6 years in a dry lowland environment. Hexaploid 'Endura' caucasian clover or 'Grasslands Demand' white clover were sown in December 1994 with high endophyte 'Yatsyn' perennial ryegrass, 'Grasslands Wana' cocksfoot, 'Grasslands Advance' tall fescue, 'Grasslands Gala' grazing brome, or 'Grasslands Maru' phalaris into a deep, fertile silt loam. Initial establishment of clovers was poor with ryegrass and grazing brome. Some volunteer white clover established in all 10 treatments. After the first 14 months, no irrigation was applied over the following 4 years. Sheep grazed plots about six times each year. The legume cover in 15-month-old pastures was higher when sown with white clover (29%) than caucasian clover (21%) but dry conditions during 1997/1998 (60% of 680 mm mean annual rainfall) and 1998/1999 (66% of mean rainfall) decreased the percentage of legume in white clover pastures. In February 1998 and March 1999, legume contributed 37% and 21% of the dry matter (DM) in caucasian clover pastures, but only 4% and 1% in pastures sown with white clover. Rainfall during the sixth season (1999/2000) was more favourable (111% of mean rainfall). Total DM production from July 1999 to June 2000 was 10.0 t DM/ha from caucasian clover pastures and 8.7 t DM/ha from pastures sown with white clover. The mean proportion of legume in white clover pastures ranged from 9% when sown with ryegrass and phalaris to 1% with cocksfoot. In contrast, mean caucasian clover legume contents were similar across all grass treatments at 20%, but reached 46% with cocksfoot during summer. It was concluded that caucasian clover is more tolerant of summer moisture stress than white clover when in association with perennial grass species. Keywords: botanical composition, Bromus stamineus, Dactylis glomerata, legume content, Lolium perenne, moisture stress, pasture production, Phalaris aquatica, Schedonorus phoenix syn. Festuca arundinacea, Trifolium ambiguum, T. repens


Sign in / Sign up

Export Citation Format

Share Document