scholarly journals SPECTROSCOPIC STUDIES OF Cu (II) AND Co (II) COMPLEXES WITH RUTIN IN SOLUTIONS

2021 ◽  
Vol 87 (10) ◽  
pp. 90-102
Author(s):  
Elena Trunova ◽  
Michailo Artamonov ◽  
Tamara Makotryk

Complexation in M (II) – Rut systems (M(II) = Co, Cu) was studied by electron absorption spectroscopy and pH-metric titration in water-ethanol solutions depending on the metal: ligand ratio (1: 1; 2: 1) and the pH of the medium. It was shown that the structure and stoichiometric composition of the complexation reaction products are influenced by such basic parameters as L:M and the pH value of the medium. Depending on the pH value,  chelation involves certain binding sites, which primarily is associated with the redistribution of the electron density in the flavonoid molecule. In a weakly acidic or neutral medium, regardless of the M(II): Rut ratio, the formation of monoligand complexes of rutin with 3-d metals occurs with the participation of 5-OH and 4-C=O fragments of the A and C rings, and in an alkaline medium, chelation proceeds on the catecholic fragment of  ring B rutin. Biligand complexes are formed with the participation of the gydroxo groups of the catechol fragment of each rutin molecule, and the formation of compounds with a ratio of 2:1 occurs both due to 5-OH and 4C=O and due to 3 ', 4'-OH groups. The calculated values of the stability constants of the complexes showed that the stability of the Co (II) complexes is several orders of magnitude lower than the stability of the corresponding Cu (II) complexes.

1968 ◽  
Vol 41 (3) ◽  
pp. 621-625
Author(s):  
Yu N. Nikitin ◽  
V. G. Epshtein ◽  
M. A. Polyak

Abstract Infrared spectroscopic studies were carried out with reaction products of natural rubber with 101K tertiary butylphenol-formaldehyde resin without activators and in the presence of stannous chloride dihydrate and zinc oxide. No reduction was observed in unsaturated rubber content during reaction with resin. Reaction of resin with rubber probably takes place at the α-carbon atom and not at the double bonds. A reduction in the proportion of resin phenol hydroxyl is basically due to its participation in recombination reactions of radicals formed during breakdown of ether bridges of resin. At 150° C activators accelerate decomposition of resin ether bridges, but increase the stability of phenol hydroxyl. In the case of zinc oxide, phenol hydroxyl is sufficiently resistant even at 180° C.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4314
Author(s):  
Yue Luo ◽  
Shiming Li ◽  
Chi-Tang Ho

Flavor is one of the most important factors in attracting consumers and maximizing food quality, and the Maillard reaction (MR) is highly-involved in flavor formation. However, Maillard reaction products have a big drawback in their relatively low stability in thermal treatment and storage. Amadori rearrangement products (ARPs), MR intermediates, can alternatively act as potential flavor additives for their better stability and fresh flavor formation ability. This review aims to elucidate key aspects of ARPs’ future application as flavorings. The development of current analytical technologies enables the precise characterization of ARPs, while advanced preparation methods such as synthesis, separation and drying processes can increase the yield of ARPs to up to 95%. The stability of ARPs is influenced by their chemical nature, pH value, temperature, water activity and food matrix. ARPs are associated with umami and kokumi taste enhancing effects, and the flavor formation is related to amino acids/peptides of the ARPs. Peptide-ARPs can generate peptide-specific flavors, such as: 1,6-dimethy-2(1H)-pyrazinone, 1,5-dimethy-2(1H)-pyrazinone, and 1,5,6-trimethy-2(1H)-pyrazinone. However, further research on systematic stability and toxicology are needed.


2020 ◽  
Vol 24 ◽  
Author(s):  
Hubert Hettegger ◽  
Andreas Hofinger ◽  
Thomas Rosenau

: The regioselectivity of the reaction of 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ) with diamines could not be explained satisfactorily so far. In general, the reaction products can be derived from the tautomeric ortho-quinoid structure of a hypothetical 4,5-dihydroxy-[1,2]-benzoquinone. However, both aromatic and aliphatic 1,2-diamines form in some cases phenazines, formally by diimine formation on the quinoid carbonyl groups, and in other cases the corresponding 1,2- diamino-[1,2]-benzoquinones, by nucleophilic substitution of the OH groups, the regioselectivity apparently not following any discernible pattern. The reactivity was now explained by an adapted theory of strain-induced bond localization (SIBL). Here, the preservation of the "natural" geometry of the two quinoid C–C double bonds (C3=C4 and C5=C6) as well as the N–N distance of the co-reacting diamine are crucial. A decrease of the annulation angle sum (N–C4–C5 + C4–C5–N) is tolerated well and the 4,5-diamino-ortho-quinones, having relatively short N–N spacings are formed. An increase in the angular sum is energetically unfavorable, so that diamines with a larger N–N distance afford the corresponding ortho-quinone imines. Thus, for the reaction of DHBQ with diamines, exact predictions of the regioselectivity, and the resulting product structure, can be made on the basis of simple computations of bond spacings and product geometries.


1996 ◽  
Vol 61 (8) ◽  
pp. 1115-1130 ◽  
Author(s):  
Jiří Čejka ◽  
Naděžda Žilková ◽  
Blanka Wichterlová

Kinetic study of toluene and benzene alkylation with isopropyl alcohol on alumo- and ferrisilicates of MFI structure has shown that the alkylation activity does not follow the acidity (both the number and strength of bridging OH groups) of these molecular sieves. The rate of the overall reaction is controlled by the desorption/transport rate of bulky, strongly adsorbed cymenes and cumene. A higher concentration of n-propyltoluenes compared to n-propylbenzene, both undesired reaction products, formed via a bimolecular isomerization of isopropyl aromate with benzene or toluene, was due to the higher reactivity of isopropyltoluene with toluene in comparison with that of cumene with benzene. It is concluded that ferrisilicates of MFI structure possessing low strength acid sites appear to be promising catalysts for achieving both a high isopropyl- and para-selectivity in toluene alkylation to p-cymene.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Barbara D. Weiß ◽  
Michael Harasek

This review studies unwanted precipitation reactions, which can occur in SO2 absorption processes using a magnesium hydroxide slurry. Solubility data of potential salts in the MgO-CaO-SO2-H2O system are evaluated. The reviewed data can serve as a reliable basis for process modeling of this system used to support the optimization of the SO2 absorption process. This study includes the solubility data of MgSO3, MgSO4, Mg(OH)2, CaSO3, CaSO4, and Ca(OH)2 as potential salts. The solubility is strongly dependent on the state of the precipitated salts. Therefore, this review includes studies on the stability of different forms of the salts under different conditions. The solubility data in water over temperature serve as a base for modeling the precipitation in such system. Furthermore, influencing factors such as pH value, SO2 content and the co-existence of other salts are included and available data on such dependencies are reviewed. Literature data evaluated by the International Union of Pure and Applied Chemistry (IUPAC) are revisited and additional and newer studies are supplemented to obtain a solid base of accurate experimental values. For temperatures higher than 100 °C the available data are scarce. For a temperature range from 0 to 100 °C, the reviewed investigations and data provide a good base to evaluate and adapt process models for processes in order to map precipitations issues accurately.


2021 ◽  
Vol 829 (1) ◽  
pp. 012021
Author(s):  
Dongfang Yang ◽  
Danfeng Yang ◽  
Haixia Li ◽  
Dong Lin ◽  
Qi Wang
Keyword(s):  
Ph Value ◽  

2012 ◽  
Vol 239-240 ◽  
pp. 1573-1576
Author(s):  
Zhu Qing Gao ◽  
Xiao Dong Cai ◽  
Kai Cheng Ling

At different temperatures, the protonation constants of tannic acid and the complex apparent stability constants between tannic acid and VO2+ were determined by using pH potentimetric method. The results showed that the protonation constants and the complex apparent stability constants slightly decreased with the raising temperature. In accordance with the pH value in the tannin extract technology, the conditional stability constants of the complex were calculated on the basis of the acid effect of tannic acid and the hydrolysis effect of VO2+. It was found that pH greatly affected the stability constants of the complex , so pH must be strictly controlled in the tannin extract technology.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


Author(s):  
Mevi Irianti Tonapa ◽  
Rani Dewi Pratiwi ◽  
Elsye Gunawan

Kenop Flower (Gomphrena globosa L.) is used in the manufacture of lip cream because contains betacyanin pigments that function as color pigments. This study aims to determine the physical quality and stability of the lip cream preparation of the ethanol extract of kenop flower (Gomphrena globosa L.). This research was conducted experimentally, including the manufacture of lip cream formulations with ethanol extract of kenop flower (Gomphrena globosa L.) with a concentration of 10%. The results of the physical examination test for lip cream preparations for all preparations have a distinctive vanilla aroma with a semi-solid texture, F0 has ivory white color and F1-F3 has a brown color. The preparations had a homogeneous composition, average pH 6-7, had good greasing power, 5.0-5.8 average dispersion and 60.33-66.67 seconds average adhesion. The stability test carried out on day 28 found that all preparations were stable, had a distinctive vanilla aroma with a semi-solid texture, F0 had ivory white color and F1-F3 had a brown color. The preparation has a homogeneous composition; the average pH is 6-7. Where the lip cream formulas F1 and F3 decreased the pH value on the 28th day from 7 to 6 but tended to be stable and in the pH range that matched the lip pH. And there is no phase separation in all formulas.


Sign in / Sign up

Export Citation Format

Share Document