scholarly journals Mechanical Behavior of Spin-Coated Sb2S3 light Absorption Thin Films

2021 ◽  
Vol 59 (1) ◽  
pp. 1-7
Author(s):  
Mao Zhang ◽  
Dayoung Yoo ◽  
Youngseon Jeon ◽  
Dongyun Lee

To measure the mechanical properties of Sb2S3, a two-component compound semiconductor used in the light absorption layer of a solar cell, Sb2S3 thin films were formed on FTO glass using the spin coating method. The spin-coated Sb2S3 thin films were heat-treated at 200 <sup>o</sup>C in an Ar atmosphere for up to 1 hour to form a thin film with continuous crystalline structures. A nanoindentation system was used to measure the mechanical properties of the spin-coated Sb2S3 thin films, and the phenomena appearing during indentation were analyzed. We used the continuous stiffness measurement (CSM) technique, and Young's modulus and hardness measured with the indentation depth of 250 nm were about 53.1 GPa and 1.43 GPa, respectively. The results were analyzed and compared with literature values, which varied from 40 GPa for the nanowire forms of Sb2S3 to 117 GPa, based upon simulation results. Since there are few studies on the mechanical properties of spin-coated Sb2S3 thin films, the results of this study are worthwhile. Besides, we observed that the Sb2S3 thin film had a little brittleness in the indentation test at higher load, and the microstructure was pushed around the indenter depending on the degree of bonding to the FTO glass substrate. This is a matter to be considered when making flexible devices in the future.

2004 ◽  
Vol 261-263 ◽  
pp. 417-422 ◽  
Author(s):  
Dong Cheon Baek ◽  
Tae Sang Park ◽  
Soon Bok Lee

Electroplated nickel manufactured via the LIGA process, offers the possibility of stronger structure and connectors in a micro electro mechanical systems (MEMS). In this study, the mechanical properties of electroplated Nickel thin film were characterized using two methods; tension test and nano-indentation test. In tension test, a linear guided motor was used as actuator and the applied force was measured using a load cell. Strain was measured with a dual microscope that obtains the displacement of two separated zone by the tracking process of the image captured with CCD camera. In indentation test, elastic modulus was measured using a CSM(continuous stiffness measurement) module. Two types of specimen were prepared in the same wafer and tested after four months of aging, which reduces the variation of properties caused by fabrication condition and aging effect. The tension specimen is 15 µm thick and 300 µm wide. The indentation specimen is also 15 µm thick. Young's modulus were measured by two different testing methods and compared quantitatively.


2006 ◽  
Vol 326-328 ◽  
pp. 357-360 ◽  
Author(s):  
Rwei Ching Chang ◽  
Feng Yuan Chen ◽  
Chang En Sun

This work uses nanoindentation and nanoscratch to measure the mechanical properties of evaporation copper thin films. The thin film is deposited on a silicon wafer substrate by using the physical vapor deposition method provided by a resistive heating evaporator. The mechanical properties are then determined by indentation test and lateral force test produced by nanoindenter and nanoscratch. The results show that, as the copper thin film is 500nm in thickness and the indentation depth increases from 100nm to 400nm, the Young’s modulus increases from 151GPa to 160GPa while the hardness increases from 2.8GPa to 3.5GPa. Moreover, both the Young’s modulus and the hardness decrease as the thickness of the thin film increases. Besides, the nanoscratch results show that the friction factor also increases as the scratch depth increases, and a thinner film thickness makes a larger friction factor. The results represent the substrate has a significant effect on the mechanical properties of the thin films.


2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


2006 ◽  
Vol 317-318 ◽  
pp. 807-810 ◽  
Author(s):  
Chang Yeoul Kim ◽  
Jin Wook Choi ◽  
Tae Yeoung Lim ◽  
Duck Kyun Choi

Electrochromic WO3 thin film was prepared by using tungsten metal solution in hydrogen peroxide as a starting solution and by sol-gel dip coating method. XRD pattern showed that tungsten oxide crystal phase formed at 400. In the view of electrochemical property, WO3 thin film which was heat-treated at 300 and was amorphous had better than that of the crystalline phase.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


2021 ◽  
Vol 16 (2) ◽  
pp. 136-141
Author(s):  
Jingyuan Zhang ◽  
Yusheng Liu ◽  
Jianing Song ◽  
Mu Zhang ◽  
Xiaodong Li

The Cu2ZnSnS4 (CZTS) thin films were fabricated by the direct solution coating method using a novel non-particulate ink. The ink was formulated using ethanol as the solvent and 1,2-diaminopropane as the complex-ing agent. The pure phase kesterite films with good crystallinity, large-sized crystals and excellent electrical properties were prepared by the spin-coating deposition technique using the homogeneous and air-stable ink. It was found that the subsequent pre-treatment temperature had an influence on the film crystallinity and electrical properties. The best film was obtained by pre-treating the spin-coated film at 250 °C, and then post-annealing at 560 °C. The film shows a narrow bandgap of 1.52 eV and excellent electrical properties, with a resistivity of 0.07 Ocm, carrier concentration of 3.0 x 1017 cm-3, and mobility of 4.15 cm2 V-1 s-1. The novel non-particulate ink is promising for printing high quality CZTS thin films as absorber layers of thin film solar cells.


1988 ◽  
Vol 3 (5) ◽  
pp. 931-942 ◽  
Author(s):  
T. P. Weihs ◽  
S. Hong ◽  
J. C. Bravman ◽  
W. D. Nix

The mechanical deflection of cantilever microbeams is presented as a new technique for testing the mechanical properties of thin films. Single-layer microbeams of Au and SiO2 have been fabricated using conventional silicon micromachining techniques. Typical thickness, width, and length dimensions of the beams are 1.0,20, and 30 μm, respectively. The beams are mechanically deflected by a Nanoindenter, a submicron indentation instrument that continuously monitors load and deflection. Using simple beam theory and the load-deflection data, the Young's moduli and the yield strengths of thin-film materials that comprise the beams are determined. The measured mechanical properties are compared to those obtained by indenting similar thin films supported by their substrate.


Author(s):  
Genta Nakauchi ◽  
Shota Akasaki ◽  
Hideo Miura

Abstract The variation of their crystallinity, in other words, the order of atom arrangement of grain boundaries in electroplated gold thin films was investigated by changing their manufacturing conditions. Then, the effect of the crystallinity on both their mechanical and electrical properties was measured by using nano-indentation test and electromigration test. The crystallinity of the gold thin films was varied by changing the under-layer material used for electroplating. Also, the micro texture of gold thin films was evaluated by EBSD (Electron Back-Scatter Diffraction) and XRD (X-Ray Diffraction). It was clarified that the crystallinity of the electroplated gold thin films changed drastically depending on the crystallinity of the under-layer materials and electroplating conditions such as current density and temperature. This variation of the crystallinity should have caused wide variation of mechanical properties of the films. In addition, their mechanical properties such as Young’s modulus and hardness showed wide variation by about 3 times comparing with those of bulk gold. Similarly, the EM resistance of the electroplated gold bumps varied drastically depending on the ratio of porous grain boundaries and their crystallinity. Both the ratio and crystallinity also varied depending on the crystallinity of the under layer and electroplating conditions. The effective lifetime of the gold bumps was successfully predicted by considering both the crystallinity and residual stress of fine gold bumps. The lifetime varied more than 10 times as a strong function of the crystallinity of grain boundaries in the fine bumps. Therefore, it is very important to control the crystallinity of the under-layer for electroplating in order to control the distribution of the mechanical properties and reliability of the electroplated gold thin films.


2007 ◽  
Vol 22 (2) ◽  
pp. 196-200 ◽  
Author(s):  
Jianning Ding ◽  
Guoxin Xie ◽  
Zhen Fan ◽  
Yongzhong Fu ◽  
Zhiyong Ling

2005 ◽  
Vol 908 ◽  
Author(s):  
Kristoffer Meinander ◽  
Tina Clauss ◽  
Kai Nordlund

AbstractMechanical properties of thin films grown by nanocluster deposition are highly dependent on the energy at which the clusters are deposited. Using molecular dynamics computer simulations we have quantitatively studied variations in the properties of copper thin films grown by deposition of Cu nanoclusters, at energies ranging from 5 meV to 10 eV per cluster atom, on a Cu (100) substrate.


Sign in / Sign up

Export Citation Format

Share Document