scholarly journals Comparison of Electrocoagulation Process and Other Treatment Technologies in Fluoride Removal from Groundwater

2019 ◽  
Vol 2 (3) ◽  
pp. 1275-1282
Author(s):  
Benan Yazici Karabulut ◽  
Ayse Dilek Atasoy

Groundwater is one of the most important natural resources in the world and plays a very important role in the supply of drinking water. Fluoride is probably one of the most common groundwater pollutants in the world for various reasons (structure of soil and rocks, etc.). The concentration of fluoride in groundwater above 1.5 mg/L begins to pose some risks to human health. Various conventional techniques such as adsorption, ion exchange, reverse osmosis, nanofiltration, precipitation have been developed for the removal of fluoride from water. However, they have several limitations, such as post-treatment re-treatment, less efficiency and higher installation costs. The electrocoagulation process is an effective technology for fluoride removal within conventional techniques. In this study, fluoride removal technologies are emphasized, and the studies done in this field are examined. The aim of this study is to investigate the advantages of electrocoagulation method in fluoride removal and to compare electrocoagulation process with other treatment technologies.

2013 ◽  
Vol 13 (2) ◽  
pp. 238-248 ◽  
Author(s):  
R. Buamah ◽  
R. Asare Mensah ◽  
A. Salifu

High fluoride levels beyond the recommended value of 1.5 mg/L have been detected in several groundwater wells in Northern Ghana. This occurrence has led to the capping of many high yielding wells that hitherto have been major sources of drinking water for the populace in these arid areas. Most of the fluoride removal technologies applied in the area has not been versatile in effectively removing fluoride because of the varying water qualities. This study focused on screening adsorbents including high aluminium or iron containing bauxite ores, fabricated zeolite and activated Neem seeds for removal of fluoride from drinking water. The model water used was prepared by simulating the prevailing groundwater quality in Northern Ghana. The high aluminium bauxite ore (HABO) had the highest fluoride removal capacity. Within the pH range tested (5–7), the fluoride removal decreased with increasing pH. Occurrence of sulfate, chloride and nitrate in the model water reduced the fluoride removal capacity by 57, 24 and 38% respectively. The combined effect of these anions showed a 60% reduction in the fluoride removal capacity. The Freundlich and Langmuir isotherms gave an adsorption capacity (K) of 0.90 mg/g for the HABO. The adsorption kinetics fitted well the pseudo second-order kinetic model. The HABO is thermally stable and has kaolinite [Al2Si2O5(OH)5] and gibbsite [Al(OH)3] as its major components. X-ray fluorescence (XRF) and energy dispersive X-ray (EDX) results showed Al, Fe, Ti, O, C and Si as the predominant elements in the HABO.


2013 ◽  
Vol 14 (1) ◽  
pp. 48-60 ◽  
Author(s):  
C. J. Jones ◽  
D. Laky ◽  
I. Galambos ◽  
C. Avendano ◽  
V. L. Colvin

Determining a technology's merit as a solution to Hungarian drinking water arsenic contamination goes beyond technical concerns: environmental and economic aspects also play very important roles. In an effort to address the current arsenic drinking water requirements in Hungary, life cycle analysis (LCA) methodology was applied on two example arsenic removal technologies, coagulation-filtration and adsorption, from cradle to grave. A distribution of 500 m3/day was assumed, along with a range of possible operation boundary conditions modelled solely for As treatment. Nine out of 10 considered impact categories tended to favour coagulation-filtration, however realistic variations in water chemistry and product characteristics led to some overlap of their environmental impact. Unlike other studies on water systems, electricity did not have a large direct impact; this was due to the focussed nature of this study on individual treatment technologies rather than an entire water supply system. Regeneration of the adsorption technology filter material was also observed to require nearly the same mass of materials for one regeneration as what was needed to support the coagulation-filtration technology for an entire year. Hazardous waste was surprisingly not reduced for adsorption compared to coagulation-filtration due to prefiltration requirements and an extra regeneration, even though adsorption shifts some of the environmental burden to the production phase. Additionally, cost analysis observes that coagulation-filtration is the cheaper of the two technologies; its highest cost is that of waste disposal, while the highest single expense modelled is that of the adsorption media cost.


2017 ◽  
Vol 7 (3) ◽  
pp. 387-395 ◽  
Author(s):  
Teshome L. Yami ◽  
David A. Sabatini ◽  
Lowell W. Busenitz

This paper addresses how business models inform viability of different fluoride treatment technologies for developing countries as well as the pursuit of financial and operational sustainability. Excess fluoride concentrations in drinking water supplies negatively impact the health of communities living in fluoride affected regions of the world by causing dental and skeletal fluorosis and other severe socio-economic problems. Given that fluoride mitigation solutions have proven elusive, we apply business model logic to compare fluoride removal technologies to examine the financial sustainability of water service provisions. We analyze the investment cost of producing fluoride safe water, the annual revenues generated, and the net benefits obtained from different technologies. Furthermore, the reduced medical costs and productivity losses averted due to access to fluoride safe water can lead to an average annual cost saving of $67 per person. Our results validate the use of business models to help evaluate different technologies as a means of pursuing sustainable applications for safe drinking water.


Contamination of drinking water due to the presence of as has become a global environmental and socio-economic threat. The appearance of high Arsenic (As) in drinking water causes a serious health issue around the world. Many countries in different parts of the world have reported high arsenic concentrations. Among all groundwater arsenic contamination affected countries, the position of Bangladesh is the worst. Therefore, it is very important to develop affordable and efficient techniques to remove As from drinking water to protect human health. The most used methods are oxidation, coagulation, adsorption, ion exchange, and membrane technologies. Oxidation is usually used as pretreatment for most of the methods. Coagulation is the most common arsenic mitigation technology in Bangladesh. This technique is effective from pH 6-8. Ion exchange resins can only remove arsenate. Activated alumina beds work best in slightly acidic waters and usually have much longer run times than ion exchange resins. A cost-effective method for mitigation of As from drinking water is the use of low-cost adsorbent. Membrane methods which are more costly than other arsenic mitigation techniques but very effective where very low arsenic levels are required. Providing a safe water source may not possible in some of the arsenic affected regions or sometimes this process becomes very expensive. Mitigation of As from drinking water may be more appropriate in these situations. This paper presents a review of the conventional methods used for mitigation of As from contaminated drinking water.


2014 ◽  
Vol 9 (3) ◽  
pp. 409-416
Author(s):  
B. Pelivanoski ◽  
K. Pirke

One of the worst environmental problems facing humanity in regard to contamination in drinking water is arsenic. The World Health Organisation has set a standard 10 μg/l for arsenic in drinking water. Arsenic is a natural element that is present in many regions of the world. The groundwater can be heavily polluted in these areas, and often no other water sources are available. The case study presented here is situated in northern Serbia. The groundwater shows concentrations up to 135 μg/l with an average of 110 μg/l of arsenic. The additional high concentrations of natural organic matter, phosphates, dissolved methane, volatile organic carbon and ammonia boron and sodium further complicate the treatment. Different treatment technologies have been tested over the past decades but proved either inefficient or not economical. The pilot testing period started in September 2012 and ended in August 2013. The most stable and economical process was then further optimized and adjusted. The process comprises multiple treatment stages including stripping, precipitation, bio-filtration and two stages ion-exchange as well as partial reverse osmoses. The process design guaranteed outflow values defined according to the European directive 98/83/EC.


2018 ◽  
Vol 11 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Ronald Zakhar ◽  
Ján Derco ◽  
František Čacho

Abstract Arsenic (As) is metalloid, naturally present in the environment but also introduced by human activities. It is toxic and carcinogenic and its exposure to low or high concentrations can be fatal to human health. Arsenic contamination in drinking water threatens more than 150 million peoples all over the world. Therefore, treatment of As contaminated water is of unquestionable importance. The present review begins with an overview of As chemistry, distribution and toxicity, which are relevant aspects to understand and develop remediation techniques. The most common As removal processes (chemical precipitation, adsorption, ion exchange, membrane filtration, phytoremediation and electrocoagulation) are presented with discussion of their advantages, drawbacks and the main recent achievements.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1191
Author(s):  
Adriana Robledo-Peralta ◽  
Miriam López-Guzmán ◽  
Corazón G. Morales-Amaya ◽  
Liliana Reynoso-Cuevas

Contamination of drinking water by arsenic and fluoride is a global problem, as more than 300 million people in more than 100 countries have been affected by their presence. These elements are considered the most serious contaminants in drinking water and their removal is a worldwide concern. Therefore, the evaluation of three alternative approaches—electrocoagulation, adsorption by biomaterials, and adsorption by metal oxide magnetic nanoparticles (MNPs)—was performed for arsenic and fluoride removal from groundwater. Arsenic removal from synthetic and groundwater (well water) was accomplished with the three processes; meanwhile, fluoride removal from groundwater was only reported by two methods. The results indicate that an electrocoagulation process is a good option for As (>97%) and F (>90%) removal in co-occurrence; however, the operational conditions for the removal of both pollutants must be driven by those used for fluoride removal. As (80–83%) and F (>90%) removal with the biomaterials was also successful, even when the application objective was fluoride removal. Finally, MNPs (Co and Mn) were designed and applied only for arsenic removal and reached >95%. Factors such as the pH, the presence of interfering ions, and the initial concentration of the contaminants are decisive in the treatment process’s efficiency.


2006 ◽  
Vol 4 (1) ◽  
pp. 139-147 ◽  
Author(s):  
M. E. Kaseva

This paper presents findings of a study on optimization and application of the regenerated bone char media for the defluoridation of drinking water in Tanzania where more than 30% of all water sources have fluoride concentrations above the 1.50 mg/l which is recommended by the World Heath Organization (WHO). In this study, regeneration temperature, regeneration duration, contact time, regenerated bone char dosage and particle size were investigated. Results indicate that the highest fluoride removal and adsorption capacity were 70.64% and 0.75 mg-F/g-bc, respectively, for a sample with bone char material that was regenerated at 500°C. In this study the optimum burning duration was found to be 120 min, which resulted in residual fluoride that varied from a maximum value of 17.43 mg/l for a 2 min contact time to a minimum value of 8.53 mg/l for a contact time of 180 min. This study further indicated that the smallest size of regenerated bone char media (0.5–1.0 mm diameter) had the highest defluoridation capacity, with residual fluoride which varied from 17.82 mg/l at 2 min contact time to 11.26 mg/l at 120 min contact time. In terms of dosage of the regenerated bone char media it was established that the optimum dosage was 25 g of bone char media with a grain size of 0.50–1.0 mm. This had a fluoride removal capacity of 0.55 mg-F/g-BC. Column filter experiments indicated that regenerated bone media is capable of removing fluoride from dinking water to meet both WHO and Tanzania recommended values.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ruwanthi W. Premathilaka ◽  
Nalinda D. Liyanagedera

Arising awareness of health hazards due to long-term exposure of fluoride has led researchers to seek for more innovative strategies to eliminate excess fluoride in drinking water. Fluoride-bearing chemicals in both natural and anthropogenic sources contaminate drinking water, which mainly cause for human fluoride ingestion. Hence, developing sustainable approaches toward alleviation is essential. Among many emerging techniques of defluoridation, nanotechnological approaches stand out owing to its high efficiency, and hence, as in many areas, nanotechnology for excess fluoride removal in water is gaining ground compared to other conventional adsorbents and process. The present review focuses on some of the advanced and recent nanoadsorbents including their strengths and shortcomings (e.g., CNT, LDH, graphene-based nanomaterials, and magnetic nanomaterials) and other processes involving nanotechnology while discussing basic aspects of hydrochemistry of fluoride and geological conditions leading for water fluoride contamination. Considering all the findings in survey, it is evident that developing more sustainable techniques is essential rather than conducting batch-type experiments solely.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdolmajid Fadaei

Fluoride pollution in subsurface water is a significant problem for different nations across the world because of the intake of excessive fluoride caused by the drinking of the contaminated subsurface. Water pollution by flouride can be attributed to the natural and human-made agents. Increased levels of fluoride in drinking water may result in the irretrievable demineralization of bone and tooth tissues, a situation called fluorosis, and other disorders. There has long been a need for fluoride removal from drinking water to make it safe for human use. Among the various fluoride removal methods, adsorption is the method most popularly used due to its cheap cost, ease of utilization, and being a scalable and simple physical technique. According to the findings of this study, the highest concentration of fluoride (0.1–15.0 mg/L) was found in Sweden and the lowest (0.03–1.14 mg/L) in Italy. We collected the values of adsorption capacities and fluoride removal efficiencies of various types of adsorbents from valuable released data accessible in the literature and exhibited tables. There is still a need to find the actual possibility of using biosorbents and adsorbents on a commercial scale and to define the reusability of adsorbents to decrease price and the waste generated from the adsorption method. This article reviews the currently available methods and approaches to fluoride removal of water.


Sign in / Sign up

Export Citation Format

Share Document