scholarly journals Using business models in designing market-based solutions: the case of fluoride treatment systems

2017 ◽  
Vol 7 (3) ◽  
pp. 387-395 ◽  
Author(s):  
Teshome L. Yami ◽  
David A. Sabatini ◽  
Lowell W. Busenitz

This paper addresses how business models inform viability of different fluoride treatment technologies for developing countries as well as the pursuit of financial and operational sustainability. Excess fluoride concentrations in drinking water supplies negatively impact the health of communities living in fluoride affected regions of the world by causing dental and skeletal fluorosis and other severe socio-economic problems. Given that fluoride mitigation solutions have proven elusive, we apply business model logic to compare fluoride removal technologies to examine the financial sustainability of water service provisions. We analyze the investment cost of producing fluoride safe water, the annual revenues generated, and the net benefits obtained from different technologies. Furthermore, the reduced medical costs and productivity losses averted due to access to fluoride safe water can lead to an average annual cost saving of $67 per person. Our results validate the use of business models to help evaluate different technologies as a means of pursuing sustainable applications for safe drinking water.


2013 ◽  
Vol 13 (2) ◽  
pp. 238-248 ◽  
Author(s):  
R. Buamah ◽  
R. Asare Mensah ◽  
A. Salifu

High fluoride levels beyond the recommended value of 1.5 mg/L have been detected in several groundwater wells in Northern Ghana. This occurrence has led to the capping of many high yielding wells that hitherto have been major sources of drinking water for the populace in these arid areas. Most of the fluoride removal technologies applied in the area has not been versatile in effectively removing fluoride because of the varying water qualities. This study focused on screening adsorbents including high aluminium or iron containing bauxite ores, fabricated zeolite and activated Neem seeds for removal of fluoride from drinking water. The model water used was prepared by simulating the prevailing groundwater quality in Northern Ghana. The high aluminium bauxite ore (HABO) had the highest fluoride removal capacity. Within the pH range tested (5–7), the fluoride removal decreased with increasing pH. Occurrence of sulfate, chloride and nitrate in the model water reduced the fluoride removal capacity by 57, 24 and 38% respectively. The combined effect of these anions showed a 60% reduction in the fluoride removal capacity. The Freundlich and Langmuir isotherms gave an adsorption capacity (K) of 0.90 mg/g for the HABO. The adsorption kinetics fitted well the pseudo second-order kinetic model. The HABO is thermally stable and has kaolinite [Al2Si2O5(OH)5] and gibbsite [Al(OH)3] as its major components. X-ray fluorescence (XRF) and energy dispersive X-ray (EDX) results showed Al, Fe, Ti, O, C and Si as the predominant elements in the HABO.



2019 ◽  
Vol 2 (3) ◽  
pp. 1275-1282
Author(s):  
Benan Yazici Karabulut ◽  
Ayse Dilek Atasoy

Groundwater is one of the most important natural resources in the world and plays a very important role in the supply of drinking water. Fluoride is probably one of the most common groundwater pollutants in the world for various reasons (structure of soil and rocks, etc.). The concentration of fluoride in groundwater above 1.5 mg/L begins to pose some risks to human health. Various conventional techniques such as adsorption, ion exchange, reverse osmosis, nanofiltration, precipitation have been developed for the removal of fluoride from water. However, they have several limitations, such as post-treatment re-treatment, less efficiency and higher installation costs. The electrocoagulation process is an effective technology for fluoride removal within conventional techniques. In this study, fluoride removal technologies are emphasized, and the studies done in this field are examined. The aim of this study is to investigate the advantages of electrocoagulation method in fluoride removal and to compare electrocoagulation process with other treatment technologies.



Author(s):  
Cyprian Murutu ◽  
Maurice S. Onyango ◽  
Aoyi Ochieng ◽  
Fred Otieno

Fluoride in drinking water above permissible levels is responsible for human dental and skeletal fluorosis. Adsorptive based defluoridation is the most popular technique with several end-user applications. Consequently, this paper describes the fluoride removal potential of a novel sorbent, limestone-derived apatite from drinking water. The adsorbent was prepared by calcining limestone followed by reacting with orthophosphoric acid. Batch sorption studies were performed as a function of contact time, pH, initial fluoride concentration, temperature and adsorbent dose. Sorption of fluoride was found to be pH dependent with a maximum occurring in the pH range of 5-9. The authors also observed that the material had a buffering effect on the same pH range. Meanwhile, the adsorption capacity was found to increase with temperature, depicting the endothermic nature of the adsorption process and decreases with adsorbent mass. The equilibrium data was well described by the conventional Langmuir isotherm, from which isotherm the maximum adsorption capacity was determined as 22.2 mg/g. From the kinetic perspective, the fluoride adsorptive reaction followed the pseudo-second order mechanism.



Author(s):  
Cyprian Murutu ◽  
Maurice S. Onyango ◽  
Aoyi Ochieng ◽  
Fred Otieno

Fluoride in drinking water above permissible levels is responsible for human dental and skeletal fluorosis. Adsorptive based defluoridation is the most popular technique with several end-user applications. Consequently, this paper describes the fluoride removal potential of a novel sorbent, limestone-derived apatite from drinking water. The adsorbent was prepared by calcining limestone followed by reacting with orthophosphoric acid. Batch sorption studies were performed as a function of contact time, pH, initial fluoride concentration, temperature and adsorbent dose. Sorption of fluoride was found to be pH dependent with a maximum occurring in the pH range of 5-9. The authors also observed that the material had a buffering effect on the same pH range. Meanwhile, the adsorption capacity was found to increase with temperature, depicting the endothermic nature of the adsorption process and decreases with adsorbent mass. The equilibrium data was well described by the conventional Langmuir isotherm, from which isotherm the maximum adsorption capacity was determined as 22.2 mg/g. From the kinetic perspective, the fluoride adsorptive reaction followed the pseudo-second order mechanism.



2003 ◽  
Vol 1 (3) ◽  
pp. 109-115 ◽  
Author(s):  
Thomas F. Clasen ◽  
Andrew Bastable

Paired water samples were collected and analysed for thermotolerant coliforms (TTC) from 20 sources (17 developed or rehabilitated by Oxfam and 3 others) and from the stored household water supplies of 100 households (5 from each source) in 13 towns and villages in the Kailahun District of Sierra Leone. In addition, the female head of the 85 households drawing water from Oxfam improved sources was interviewed and information recorded on demographics, hygiene instruction and practices, sanitation facilities and water collection and storage practices. At the non-improved sources, the arithmetic mean TTC load was 407/100 ml at the point of distribution, rising to a mean count of 882/100 ml at the household level. Water from the improved sources met WHO guidelines, with no faecal contamination. At the household level, however, even this safe water was subject to frequent and extensive faecal contamination; 92.9% of stored household samples contained some level of TTC, 76.5% contained more than the 10 TTC per 100 ml threshold set by the Sphere Project for emergency conditions. The arithmetic mean TTC count for all samples from the sampled households was 244 TTC per 100 ml (geometric mean was 77). These results are consistent with other studies that demonstrate substantial levels of faecal contamination of even safe water during collection, storage and access in the home. They point to the need to extend drinking water quality beyond the point of distribution to the point of consumption. The options for such extended protection, including improved collection and storage methods and household-based water treatment, are discussed.



2013 ◽  
Vol 228 ◽  
pp. 63-74 ◽  
Author(s):  
A. Salifu ◽  
B. Petrusevski ◽  
K. Ghebremichael ◽  
L. Modestus ◽  
R. Buamah ◽  
...  


mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Koji Yasuda ◽  
Tiffany Hsu ◽  
Carey A. Gallini ◽  
Lauren J. Mclver ◽  
Emma Schwager ◽  
...  

ABSTRACT Fluoride has been added to drinking water and dental products since the 1950s. The beneficial effects of fluoride on oral health are due to its ability to inhibit the growth of bacteria that cause dental caries. Despite widespread human consumption of fluoride, there have been only two studies of humans that considered the effect of fluoride on human-associated microbial communities, which are increasingly understood to play important roles in health and disease. Notably, neither of these studies included a true cross-sectional control lacking fluoride exposure, as study subjects continued baseline fluoride treatment in their daily dental hygiene routines. To our knowledge, this work (in mice) is the first controlled study to assess the independent effects of fluoride exposure on the oral and gut microbial communities. Investigating how fluoride interacts with host-associated microbial communities in this controlled setting represents an effort toward understanding how common environmental exposures may potentially influence health. Fluoridation of drinking water and dental products prevents dental caries primarily by inhibiting energy harvest in oral cariogenic bacteria (such as Streptococcus mutans and Streptococcus sanguinis), thus leading to their depletion. However, the extent to which oral and gut microbial communities are affected by host fluoride exposure has been underexplored. In this study, we modeled human fluoride exposures to municipal water and dental products by treating mice with low or high levels of fluoride over a 12-week period. We then used 16S rRNA gene amplicon and shotgun metagenomic sequencing to assess fluoride’s effects on oral and gut microbiome composition and function. In both the low- and high-fluoride groups, several operational taxonomic units (OTUs) belonging to acidogenic bacterial genera (such as Parabacteroides, Bacteroides, and Bilophila) were depleted in the oral community. In addition, fluoride-associated changes in oral community composition resulted in depletion of gene families involved in central carbon metabolism and energy harvest (2-oxoglutarate ferredoxin oxidoreductase, succinate dehydrogenase, and the glyoxylate cycle). In contrast, fluoride treatment did not induce a significant shift in gut microbial community composition or function in our mouse model, possibly due to absorption in the upper gastrointestinal tract. Fluoride-associated perturbations thus appeared to have a selective effect on the composition of the oral but not gut microbial community in mice. Future studies will be necessary to understand possible implications of fluoride exposure for the human microbiome. IMPORTANCE Fluoride has been added to drinking water and dental products since the 1950s. The beneficial effects of fluoride on oral health are due to its ability to inhibit the growth of bacteria that cause dental caries. Despite widespread human consumption of fluoride, there have been only two studies of humans that considered the effect of fluoride on human-associated microbial communities, which are increasingly understood to play important roles in health and disease. Notably, neither of these studies included a true cross-sectional control lacking fluoride exposure, as study subjects continued baseline fluoride treatment in their daily dental hygiene routines. To our knowledge, this work (in mice) is the first controlled study to assess the independent effects of fluoride exposure on the oral and gut microbial communities. Investigating how fluoride interacts with host-associated microbial communities in this controlled setting represents an effort toward understanding how common environmental exposures may potentially influence health.



2015 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Mohamad M. Diémé ◽  
Maxime Hervy ◽  
Saïdou N. Diop ◽  
Claire Gérente ◽  
Audrey Villot ◽  
...  

<p>The objective of this study was to investigate the production of activated carbons (AC) from cashew shells, and millet stalks and their efficiency in fluoride retention. These agricultural residues are collected from Senegal. It is known that some regions of Sénégal, commonly called the groundnut basin, are affected by a public health problem caused by an excess of fluoride in drinking water used by these populations. The activated carbons were produced by a combined pyrolysis and activation with water steam; no other chemical compounds were added. Then, activated carbonaceous materials obtained from cashew shells and millet stalks were called CS-H<sub>2</sub>O and MS-H<sub>2</sub>O respectively. CS-H<sub>2</sub>O and MS-H<sub>2</sub>O show very good adsorbent features, and present carbon content ranges between 71 % and 86 %. The BET surface areas are 942 m² g<sup>-1</sup> and 1234 m².g<sup>-1</sup> for CS-H<sub>2</sub>O and MS-H<sub>2</sub>O respectively. A third activated carbon produced from food wastes and coagulation-flocculation sludge (FW/CFS-H<sub>2</sub>O) was produced in the same conditions. Carbon and calcium content of FW/CFS-H<sub>2</sub>O are 32.6 and 39.3 % respectively. The kinetics sorption were performed with all these activated carbons, then the pseudo-first equation was used to describe the kinetics sorption. Fluoride adsorption isotherms were performed with synthetic and natural water with the best activated carbon from kinetics sorption, Langmuir and Freundlich models were used to describe the experimental data. The results showed that carbonaceous materials obtained from CS-H<sub>2</sub>O and MS-H<sub>2</sub>O were weakly efficient for fluoride removal. With FW/CFS-H<sub>2</sub>O, the adsorption capacity is 28.48 mg.g<sup>-1 </sup>with r² = 0.99 with synthetic water.</p>



2015 ◽  
Vol 9 (08) ◽  
pp. 844-848 ◽  
Author(s):  
Sita Malhotra ◽  
Shailpreet K Sidhu ◽  
Pushpa Devi

Introduction: Safe water is a precondition for health and development and is a basic human right, yet it is still denied to hundreds of millions of people throughout the developing world. Water-related diseases caused by insufficient safe water supplies, coupled with poor sanitation and hygiene, cause 3.4 million deaths a year, mostly in children. Methodology: The present study was conducted on 1,317 drinking water samples from various water sources in Amritsar district in northern India. All the samples were analyzed to assess bacteriological quality of water for presumptive coliform count by the multiple tube test. Results: A total of 42.9% (565/1,317) samples from various sources were found to be unfit for human consumption. Of the total 565 unsatisfactory samples, 253 were from submersible pumps, 197 were from taps of piped supply (domestic/public), 79 were from hand pumps, and 36 were from various other sources A significantly high level of contamination was observed in samples collected from submersible pumps (47.6%) and water tanks (47.3%), as these sources of water are more exposed and liable to contamination. Conclusions: Despite continuous efforts by the government, civil society, and the international community, over a billion people still do not have access to improved water resources. Bacteriological assessment of all sources of drinking should be planned and conducted on regular basis to prevent waterborne dissemination of diseases.



Sign in / Sign up

Export Citation Format

Share Document