scholarly journals Metode PID untuk pengkondisian suhu pada bedplate di pencetak 3D 2x2x2 meter

JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 35
Author(s):  
Budhy Setiawan ◽  
Purusa Tama ◽  
Delila Cahya

ABSTRAK 3D Printer mulai digunakan di dalam dunia industri Indonesia dalam beberapa tahun terakhir, karena dengan meggunakan 3D printer pembuatan prototype yang biasanya memakan waktu cukup lama dapat dibuat dalam waktu yang lebih singkat. Pada pembuatan 3D Printer Bedplate bisa dibilang salah satu bagian terpenting dari 3D printer, karena tidak akan bisa mencetak dengan baik tanpa itu. Fungsi utama Bedplate sendiri yaitu sebagai tempat alas cetak selama proses mencetak berlangsung. Terdapat banyak variasi Bedplate dengan menggunakan permukaan yang berbeda, karakteristik termal yang berbeda dan ukuran yang berbeda. Bedplate yang dijual secara universal memiliki ukuran kurang dari 50 cm sehingga jika ingin mencetak obyek dengan ukuran lebih dari 50 cm diperlukan bedplate dengan ukuran lebih dari 50 cm. Pada penelitian ini untuk mencetak obyek menggunakan Bedplate dengan ukuran 1 x 2 meter yang terbuat dari bahan kaca dan untuk filament menggunakan bahan biji plastik high density polyethylene (HDPE). Filament HDPE cenderung memiliki daya rekat yang buruk pada permukaan. Pada bahan cetak 3D Printer menggunakan Bahan high density polyethylene (HDPE) diperlukan suhu Konstan 65°C secara merata pada Bedplate agar bahan cetak dapat menempel dengan baik pada Bedplate.Untuk menghasilkan hasil cetakan yang baik, suhu Bedplate harus dikontrol dengan tepat dengan menggunakan Metode Proportional Intergral Deferential (PID), suhu terbaik Bedplate untuk Untuk proses penempelan bahan high density polyethylene HDPE adalah sebesar 65°C ABSTRACT 3D Printer began to be used in the indonesian industrial world in recent years, because by using 3D printers that usually take a long time can be made in a shorter time. In the manufacture of 3D Printer Bedplate is arguably one of the most important parts of 3D printers, because it would not be able to print well without it. The main function of Bedplate itself is as a printing base during the printing process. There are many variations of Bedplate using different surfaces, different thermal characteristics and different sizes. Bedplate sold universally has a size of less than 50 cm so if you want to print objects with a size of more than 50 cm is required bedplate with a size of more than 50 cm. In this study to print objects using Bedplate with a size of 1 x 2 meters made of glass and for filament using high density polyethylene (HDPE) plastic seed material. HDPE filaments tend to have poor adhesence on the surface. In 3D printing materials Printers use high density polyethylene (HDPE) materials required Constant temperature of 65 °C evenly on the Bedplate so that the print material can stick well to the Bedplate.To produce a good print result, the temperature of Bedplate must be controlled precisely by using the Proportional Intergral Deferential Method (PID), the best temperature bedplate for the process of attaching materials High density polyethylene HDPE material is 65 °C.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2545
Author(s):  
Marcin Hoffmann ◽  
Krzysztof Żarkiewicz ◽  
Adam Zieliński ◽  
Szymon Skibicki ◽  
Łukasz Marchewka

Foundation piles that are made by concrete 3D printers constitute a new alternative way of founding buildings constructed using incremental technology. We are currently observing very rapid development of incremental technology for the construction industry. The systems that are used for 3D printing with the application of construction materials make it possible to form permanent formwork for strip foundations, construct load-bearing walls and partition walls, and prefabricate elements, such as stairs, lintels, and ceilings. 3D printing systems do not offer soil reinforcement by making piles. The paper presents the possibility of making concrete foundation piles in laboratory conditions using a concrete 3D printer. The paper shows the tools and procedure for pile pumping. An experiment for measuring pile bearing capacity is described and an example of a pile deployment model under a foundation is described. The results of the tests and analytical calculations have shown that the displacement piles demonstrate less settlement when compared to the analysed shallow foundation. The authors indicate that it is possible to replace the shallow foundation with a series of piles combined with a printed wall without locally widening it. This type of foundation can be used for the foundation of low-rise buildings, such as detached houses. Estimated calculations have shown that the possibility of making foundation piles by a 3D printer will reduce the cost of making foundations by shortening the time of execution of works and reducing the consumption of construction materials.


Author(s):  
Verma Walker, MLIS

Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.


Author(s):  
Daniel A. Tillman ◽  
Ross C. Teller ◽  
Paul E. Perez ◽  
Song A. An

This chapter examines the theories, strategies, and techniques for employing 3D printing technologies to fabricate education-appropriate augmented reality (AR) headsets and provides a concrete example of an AR headset that the authors developed. The chapter begins by discussing theories and historically relevant events that provide a context for the chapter's narrative about use of 3D printers to support AR in education. Next, the chapter presents the strategies that were employed while developing and 3D fabricating a custom-designed AR headset that was intended for supporting middle school students learning science and mathematics content knowledge. Afterward, the chapter provides directions and resources for the reader describing how to build the presented AR headset design themselves by using a 3D printer and affordable electronic components, as well as information about how to join the Maker community and participate in the designing and producing of similar projects. Lastly, the chapter delivers a summarization of all findings discussed.


2020 ◽  
Vol 992 ◽  
pp. 194-199
Author(s):  
V.V. Molodin ◽  
E.V. Vasenkov ◽  
P.L. Timin

The 3D printer technology of insulating walls, using the technology of one-stage polystyrene concrete laid with electric heating of the initial mixture is described. This technology test’s results, confirming the possibility of layer-by-layer molding of the insulated wall with the bead polystyrene’s filler mixture was subjected to electro thermal treatment directly in the working head of the 3D printer were carried out. Polystyrene swells, changing the thermal characteristics of the material and, at the same time, compacting the mixture, and the 3D printer forms a quick-hardening working layer of a wall, being built from the hot mixture that is losing its mobility. The technological features of molding a wall of one-stage polystyrene concrete by a 3D printer, the uniform distribution of polystyrene granules in it and its strength were investigated. The possibility of the proposed technology using in the construction industry was proved.


Author(s):  
Felicia Stan ◽  
Nicoleta-Violeta Stanciu ◽  
Catalin Fetecau

Abstract This study focuses on 3D printing of multi-walled carbon nanotube/high density polyethylene (MWCNT/HDPE) composites. First, rheological properties of 0.1, 1, and 5 wt.% MWCNT/HDPE composites were investigated to estimate the 3D printability window. Second, filaments with 1.75 mm diameter were fabricated and subsequently extruded by a commercial 3D printer. Finally, the filaments and 3D printed parts were tested to correlate the rheological, mechanical, and electrical properties with processing parameters. Experimental results show that flow behavior of MWCNT/HDPE composites is a critical factor affecting the 3D printability. The shear viscosity exhibits good shear thinning behavior at high shear rates and significantly increases with increasing nanotube loading from 0.1 to 5 wt.%, at low shear rates. Reliable MWCNT/HDPE filaments were obtained with smooth surface finish and good mechanical and electrical properties. The 0.1 and 1 wt.% MWCNT/HDPE filaments exhibit very good printing characteristics. However, under the flow conditions of a standard 0.4-mm nozzle, 3D printing of 5 wt.% MWCNT/HDPE filament can be rather difficult primarily due to high shear viscosity and nozzle clogging. Thus, further investigation is needed to fully optimize the 3D printing of MWCNT/HDPE composites.


Author(s):  
Vladimir Kuznetsov ◽  
Alexey Solonin ◽  
Oleg Urzhumtcev ◽  
Azamat Tavitov ◽  
Richard Schilling

The current paper is studying the influence of geometrical parameters of the FDM (FFF) 3D printing process on printed part strength for open source desktop 3D printers and the most popular material used for that purpose, i.e. PLA (polylactic acid). The study was conducted using a set of different nozzles (0.4, 0.6 and 0.8 mm) and a range of layer heights from the minimum to maximum physical limits of the machine. To assess print strength, a novel assessment method is proposed. A tubular sample is loaded in the weakest direction (across layers) in a three-point bending fixture. To explain the results obtained, a mesostructure evaluation through SEM scans of the samples were used. A significant influence of geometric process parameters was detected on sample mesostructure and, consequently, on sample strength.


Author(s):  
Pradeep Kumar Yadav ◽  
◽  
Kamal Singh ◽  
Jitendra Bhaskar

UV light technology-based 3D printer is commonly known as Stereolithography (SLA) 3D printer. Photopolymers in liquid form is cured under the beam of UV light to form layer by layer 3D model. A beam of light is pointed that cures a limited area and takes a long time to 3D print a part. An effort has been made in this work to design and fabricate a mask and UV light-based 3D printer for printing 3D models from a liquid photopolymer resin. Samples were also printed to evaluate the performance of this printer. Performance tests were very positive to make this model a commercial machine for printing models for medical applications.


2016 ◽  
Vol 51 (3) ◽  
pp. 357-372 ◽  
Author(s):  
Mihaela Cosnita ◽  
Cristina Cazan ◽  
Anca Duta

The paper investigates new composites fully based on wastes of polyethylene terephthalate, rubber, high-density polyethylene, and wood, aiming at multifunctional, environmental-friendly materials, for indoor and outdoor applications. The rubber: polyethylene terephthalate: high-density polyethylene: wood ratio and compression molding temperatures are optimized considering the output mechanical properties, focusing on increasing the waste polyethylene terephthalate content. To investigate the durability in the working conditions, the water-stable composites, with good tensile and compression strengths were exposed to surfactant systems, saline aerosols, and ultraviolet radiations. The results prove that surfactant immersion improves the interfaces and the mechanical properties and a pre-conditioning step involving the dodecyltrimethylammonium bromide surfactant is recommended, prior application. The interfaces and the bulk composites were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, contact angle measurements, scanning electron microscopy, atomic force microscopy, to identify the properties that influence the mechanical behavior and durability. The composites containing 30% of polyethylene terephthalate, obtained at 160℃ and 190℃ have a good combination of mechanical properties and durability that is enhanced by the plasticizing effect of water and surfactants. The compressive strength of the composite processed at 190℃ was 51.2 MPa and the value increased to 58.4 MPa after water immersion. The ultraviolet and saline exposure slightly diminished this effect; however, long time testing (120 h) ended up with values higher than those corresponding to the pristine composite: 55.3 MPa after ultraviolet and 57.1 MPa after saline exposure.


Sign in / Sign up

Export Citation Format

Share Document