BACKGROUND OF MODERN TECHNIQUES FOR LABORATORY DETERMINATION OF THE ELASTICITY MODULUS OF COHESIVE SOILS AND THEIR DESIGN CHARACTERISTICS IN THE ROAD STRUCTURE (Part 2)

Author(s):  
Anatolii Lytvynenko

According to the results of laboratory stamping tests, samples (d = 150mm; H=180mm) of bulk with soil compaction having a water saturation factor Sr≥0,85 in the range of values of fluidity index – 0,5≤lℓ≤0,25 , it is concluded that it is possible to determine practically every sample, their modulus of deformability (Епр; Ед), the calculated critical resistance – Ro of soil and its maximum relative deformation λmax. The loading of the samples is carried out by a step load with a proportional (1.3 times) increased pressure, such as at each stage. During the test, the sample is not unloaded but is subject to conditional destruction, that is, a disproportionate increase in the deposits of the die. The duration of each load is three minutes. The graphs of parabolic functions of the type λ=aσb are plotted in logarithmic coordinates in the form of two segments straight on both sides of the fracture. The parameter of the degree of parabola “b” serves for preliminary estimation of the index of deformability: for the modulus of elasticity – b≈1,0 ± 0,2; for the modulus of deformation – b≈2,0 ± 0,5; for the yield modulus – b≥3.0. The work gives a comparison with similar indicators of deformability of other building and structural materials. The elastic modulus (Епр) has only a soil that meets the conditions of the standard seal ρdmax>ρdωρ і ω_o<ωρ; the modulus of deformation (Ед) has a soil when 0<lℓ<0,5, and the modulus of fluidity (Ет) has only a soil lℓ≥0,5. Natural structured soils are characterized by a modulus of structural strength (Est) in the range 0<lℓ< 0, which is determined by compression tests. In order to reduce soil consumption and increase productivity, it is proposed to consider the task of determining soil deformability indices for the calculation of road clothing as a contact and therefore reduce the height of soil samples from 180 mm to 40 mm Keywords: soil, soil engineering structure, compacted soil, design condition, elastic modulus, critical design resistance, maximum relative deformation.

Author(s):  
Anatolii Lytvynenko

According to the results of laboratory stamping tests, samples (d = 150mm; H=180mm) of bulk with soil compaction having a water saturation factor Sr≥0,85 in the range of values of fluidity index – 0,5≤lℓ≤0,25 , it is concluded that it is possible to determine practically every sample, their modulus of deformability (Епр; Ед), the calculated critical resistance – Ro of soil and its maximum relative deformation λmax. The loading of the samples is carried out by a step load with a proportional (1.3 times) increased pressure, such as at each stage. During the test, the sample is not unloaded but is subject to conditional destruction, that is, a disproportionate increase in the deposits of the die. The duration of each load is three minutes. The graphs of parabolic functions of the type λ=aσb are plotted in logarithmic coordinates in the form of two segments straight on both sides of the fracture. The parameter of the degree of parabola “b” serves for preliminary estimation of the index of deformability: for the modulus of elasticity – b≈1,0 ± 0,2; for the modulus of deformation – b≈2,0 ± 0,5; for the yield modulus – b≥3.0. The work gives a comparison with similar indicators of deformability of other building and structural materials. The elastic modulus (Епр) has only a soil that meets the conditions of the standard seal ρdmax>ρdωρ і ωo<ωρ; the modulus of deformation (Ед) has a soil when 0<lℓ<0,5, and the modulus of fluidity (Ет) has only a soil lℓ≥0,5. Natural structured soils are characterized by a modulus of structural strength (Est) in the range 0<lℓ< 0, which is determined by compression tests. In order to reduce soil consumption and increase productivity, it is proposed to consider the task of determining soil deformability indices for the calculation of road clothing as a contact and therefore reduce the height of soil samples from 180 mm to 40 mm Keywords: soil, soil engineering structure, compacted soil, design condition, elastic modulus, critical design resistance, maximum relative deformation.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.


2020 ◽  
Vol 44 (3) ◽  
pp. 151-158
Author(s):  
S. Tomilov

Так как в настоящее время в эксплуатации находится достаточно много автодорожных мостов, запроектированных и построенных в различные периоды, их, как и всю дорожную сеть, необходимо поддерживать в состоянии, соответствующем нормативам, а для этого проводить ремонт с использованием элементов усиления несущих конструкций. При качественном возведении и надлежащем уходе высокая степень сохранности мостов позволяет продлить срок их службы путем решения ряда конструктивных вопросов, наиболее актуальным из которых считают обеспечение нормативной грузоподъемности. Усиление с целью повышения грузоподъемности эксплуатируемых мостов достигается путем добавления элементов внешних или внедренных в состав существующего конструктива в зависимости от типа сооружения, его состояния и доступной технологии производства. Однако не только грузоподъемность, но и подверженность конструкций деформациям определяет транспортно-эксплуатационные параметры сооружения, характеризующие послеремонтное состояния моста. Цель настоящего исследования – анализ известного и широко востребованного способа усиления железобетонных балок внешним армированием как обеспечивающего минимальное вмешательство в существующие основные конструкции, технологичного и доступного в исполнении. Впервые дана оценка влияния стадийности включения в работу элементов усиления на общие деформации – прогибы главных балок. Ключевые слова: главная балка, грузоподъемность, усиление, внешняя арматура, свободная затяжка, стадийность работы, относительная деформация, прогиб. Currently, there are quite a lot of road bridges in operation, designed and built in different periods. It is necessary to maintain the road network including bridge structures in a condition that meets up-to-date standards, and for this repair should be carried out using reinforcing elements of the supporting structures. With high-quality construction and proper maintenance, a high degree of safety of bridges allows to extend their service life by solving a number of design issues, the most important of which is considered to be the provision of standard load capacity. Strengthening in order to increase the carrying capacity of operated bridges is achieved by adding elements external or incorporated into the existing structure, depending on the type of structure, its condition and available production technology. However, not only the carrying capacity, but also the susceptibility of structures to deformations determines the transport and operational parameters of the structure, which characterize the post-repair state of the bridge. The purpose of this study is to analyze the well-known and widely demanded method of reinforcing reinforced concrete beams with external reinforcement as providing minimal interference with the existing basic structures, technological and affordable in execution. For the first time, an assessment of the influence of the staging of the inclusion of reinforcement elements in the work on the general deformations – deflections of the main beams. Keywords: main beam, carrying capacity, reinforcement, external reinforcement, free rod, staging of work, relative deformation, deflection.


2021 ◽  
Author(s):  
Tao Zhou ◽  
Haijun Chen ◽  
Liangxiao Xiong ◽  
Zhongyuan Xu ◽  
Jie Yang ◽  
...  

Abstract To study the influence of the inclination and length of Z-shaped fissures on the mechanical properties and failure characteristics of the rock mass, this study conducts a series of uniaxial compression tests on rock-like materials with prefabricated Z-shaped fractures. In addition, two-dimensional Particle Flow Code software is used to perform uniaxial compression numerical simulations. The results show that when the specified inclination angle γ (γ = 0°, 30° or 45°) of the parallel cracks on both sides remains unchanged, the peak strength and elastic modulus of the sample show an M-shaped change trend with an increase in the inclination angle β of the middle connection crack. When γ = 60° or 90°, however, the peak strength and elastic modulus of the sample show a trend of decreasing, increasing, and then decreasing as β increases. In addition, the peak strength and elastic modulus of the sample decrease with an increase in the crack length. The influence of crack length on the elastic modulus is less than that of compressive strength. Further, the main failure mode of specimens with Z-shaped cracks is determined to be tension–shear mixed failure manifested by crack propagation from the tip of the prefabricated crack to the upper and lower boundaries of the sample. As a result, a through failure surface is formed with the prefabricated crack, which destroys the sample.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5696
Author(s):  
Guohui Zhang ◽  
Changbing Li ◽  
Hai Wei ◽  
Mingming Wang ◽  
Zhendong Yang ◽  
...  

Concrete structures are often in different humidity conditions that have a significant impact on the elastic modulus of concrete, therefore, systematic research on the evolution of the law of concrete elastic modulus under different humidity conditions is needed. In this study, the variation laws of the water saturation of concrete specimens with strength grades C15, C20, and C30 were obtained, and then the influence laws of the water saturation on the concrete axial compressive strength were carried out, and the prediction model of elastic modulus of concrete with respect to water saturation was constructed. The results showed that the water saturation of concrete with strength grades C15, C20, and C30 increased with an extension of immersion time, and the water saturation showed an approximately linear rapid growth within three soaking hours, reaching 47.56%, 71.63%, and 47.29%, respectively. Note, the concrete reached saturation state when the soaking time was 240 h. The axial compressive strength with strength grades C15, C20, and C30 decreased with increased water saturation, and the axial compressive strength of saturated concrete decreased by 27.25%, 21.14%, and 20.76%, respectively, as compared with the dry state concrete. The elastic modulus of concrete with strength grades C15, C20, and C30 increased with increased water saturation, and the elastic modulus of saturated concrete was 1.18, 1.19, and 1.24 times higher than those of dry concrete, respectively.


2019 ◽  
Vol 972 ◽  
pp. 118-122
Author(s):  
Yan Nian Zhang ◽  
Jun Xie

The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.


2012 ◽  
Vol 174-177 ◽  
pp. 1051-1055 ◽  
Author(s):  
Wei Ning Li ◽  
Dong Hui Zhan ◽  
Jin Jun Xu ◽  
Wen Zhang ◽  
Zong Ping Chen

In order to reveal the constitutive behavior of recycled aggregate concrete (RAC) which is related to time effect, 33 prismatic specimens were designed to have uniaxial compression tests. The changing variation of elastic modulus and Poisson’s ratios of RAC specimens which were placed two years in the lab were inspected, and a related correction formula was put forward to describe the elastic modulus. The results show that with the aggregate replacement rate growing, the RAC brittleness was relatively obvious. Since time effect played a great role, the axial compressive strength and elastic modulus were larger than those of normal concrete and the standard age concrete which is calculated. Poisson's ratio did not change significantly and the values were relatively stable, while the higher replacement rate is, the lower values are.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1351 ◽  
Author(s):  
Yasuhiro Umehara ◽  
Yusuke Yamanaga ◽  
Shota Akama ◽  
Shunsuke Kato ◽  
Shogo Kamoshita ◽  
...  

We fabricated a mono-link using bimodal magnetic elastomers that demonstrate drastic changes in the elastic modulus by magnetic fields. The magnetic elastomer is bimodal consisting of large magnetic particles and nonmagnetic fine particles. The storage modulus for bimodal magnetic elastomers was altered from 2.2 × 105 to 1.7 × 106 Pa by a magnetic field of 500 mT. Compression tests up to a strain of 20% also revealed that the on-field stress for the bimodal magnetic elastomer was 1.24 times higher than the off-field stress. The bimodal magnetic elastomer was synthesized for the mono-link and was mounted on the bogie of a railway vehicle. A running test exhibited that the wheel lateral force was reduced by 20% by applying a magnetic field of 390 mT.


Sign in / Sign up

Export Citation Format

Share Document