scholarly journals BRANEart: Identify Stability Strength and Weakness Regions in Membrane Proteins

2021 ◽  
Vol 1 ◽  
Author(s):  
Sankar Basu ◽  
Simon S. Assaf ◽  
Fabian Teheux ◽  
Marianne Rooman ◽  
Fabrizio Pucci

Understanding the role of stability strengths and weaknesses in proteins is a key objective for rationalizing their dynamical and functional properties such as conformational changes, catalytic activity, and protein-protein and protein-ligand interactions. We present BRANEart, a new, fast and accurate method to evaluate the per-residue contributions to the overall stability of membrane proteins. It is based on an extended set of recently introduced statistical potentials derived from membrane protein structures, which better describe the stability properties of this class of proteins than standard potentials derived from globular proteins. We defined a per-residue membrane propensity index from combinations of these potentials, which can be used to identify residues which strongly contribute to the stability of the transmembrane region or which would, on the contrary, be more stable in extramembrane regions, or vice versa. Large-scale application to membrane and globular proteins sets and application to tests cases show excellent agreement with experimental data. BRANEart thus appears as a useful instrument to analyze in detail the overall stability properties of a target membrane protein, to position it relative to the lipid bilayer, and to rationally modify its biophysical characteristics and function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/BRANEart.

2021 ◽  
Author(s):  
Sankar Basu ◽  
Simon S. Assaf ◽  
Fabian Teheux ◽  
Marianne Rooman ◽  
Fabrizio Pucci

AbstractUnderstanding the role of stability strengths and weaknesses in proteins is a key objective for rationalizing their dynamical and functional properties such as conformational changes, catalytic activity, and protein-protein and protein-ligand interactions. We present BRANEart, a new, fast and accurate method to evaluate the per-residue contributions to the overall stability of membrane proteins. It is based on an extended set of recently introduced statistical potentials derived from membrane protein structures, which better describe the stability properties of this class of proteins than standard potentials derived from globular proteins. We defined a per-residue membrane propensity index from combinations of these potentials, which can be used to identify residues which strongly contribute to the stability of the transmembrane region or which would, on the contrary, be more stable in extramembrane regions, or vice versa. Large-scale application to membrane and globular proteins sets and application to tests cases show excellent agreement with experimental data. BRANEart thus appears as a useful instrument to analyze in detail the overall stability properties of a target membrane protein, to position it relative to the lipid bilayer, and to rationally modify its biophysical characteristics and function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/BRANEart.


2020 ◽  
Vol 117 (36) ◽  
pp. 22146-22156
Author(s):  
Ruiqiong Guo ◽  
Zixuan Cang ◽  
Jiaqi Yao ◽  
Miyeon Kim ◽  
Erin Deans ◽  
...  

Packing interaction is a critical driving force in the folding of helical membrane proteins. Despite the importance, packing defects (i.e., cavities including voids, pockets, and pores) are prevalent in membrane-integral enzymes, channels, transporters, and receptors, playing essential roles in function. Then, a question arises regarding how the two competing requirements, packing for stability vs. cavities for function, are reconciled in membrane protein structures. Here, using the intramembrane protease GlpG ofEscherichiacolias a model and cavity-filling mutation as a probe, we tested the impacts of native cavities on the thermodynamic stability and function of a membrane protein. We find several stabilizing mutations which induce substantial activity reduction without distorting the active site. Notably, these mutations are all mapped onto the regions of conformational flexibility and functional importance, indicating that the cavities facilitate functional movement of GlpG while compromising the stability. Experiment and molecular dynamics simulation suggest that the stabilization is induced by the coupling between enhanced protein packing and weakly unfavorable lipid desolvation, or solely by favorable lipid solvation on the cavities. Our result suggests that, stabilized by the relatively weak interactions with lipids, cavities are accommodated in membrane proteins without severe energetic cost, which, in turn, serve as a platform to fine-tune the balance between stability and flexibility for optimal activity.


2018 ◽  
Vol 35 (15) ◽  
pp. 2578-2584 ◽  
Author(s):  
Eduardo Mayol ◽  
Mercedes Campillo ◽  
Arnau Cordomí ◽  
Mireia Olivella

Abstract Motivation The number of available membrane protein structures has markedly increased in the last years and, in parallel, the reliability of the methods to detect transmembrane (TM) segments. In the present report, we characterized inter-residue interactions in α-helical membrane proteins using a dataset of 3462 TM helices from 430 proteins. This is by far the largest analysis published to date. Results Our analysis of residue–residue interactions in TM segments of membrane proteins shows that almost all interactions involve aliphatic residues and Phe. There is lack of polar–polar, polar–charged and charged–charged interactions except for those between Thr or Ser sidechains and the backbone carbonyl of aliphatic and Phe residues. The results are discussed in the context of the preferences of amino acids to be in the protein core or exposed to the lipid bilayer and to occupy specific positions along the TM segment. Comparison to datasets of β-barrel membrane proteins and of α-helical globular proteins unveils the specific patterns of interactions and residue composition characteristic of α-helical membrane proteins that are the clue to understanding their structure. Availability and implementation Results data and datasets used are available at http://lmc.uab.cat/TMalphaDB/interactions.php. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Caitlyn L. McCafferty ◽  
Edward M. Marcotte ◽  
David W. Taylor

ABSTRACTProtein-protein interactions are critical to protein function, but three-dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a cuboid transformation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and mutation rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-specific potential surface complementarity. On two available benchmarks of 85 overall known protein complexes, we observed F1 scores (a weighted combination of precision and recall) of 19-34% at correctly identifying protein interaction surfaces, comparable to more computationally intensive 3D docking methods in the annual Critical Assessment of PRedicted Interactions. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å RMSD. Thus, a cuboid transformation of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.


Author(s):  
Jan Zaucha ◽  
Michael Heinzinger ◽  
A Kulandaisamy ◽  
Evans Kataka ◽  
Óscar Llorian Salvádor ◽  
...  

Abstract Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein’s functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.


2011 ◽  
Vol 39 (3) ◽  
pp. 719-723 ◽  
Author(s):  
Zharain Bawa ◽  
Charlotte E. Bland ◽  
Nicklas Bonander ◽  
Nagamani Bora ◽  
Stephanie P. Cartwright ◽  
...  

Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.


2010 ◽  
Vol 43 (1) ◽  
pp. 65-158 ◽  
Author(s):  
Kutti R. Vinothkumar ◽  
Richard Henderson

AbstractIn reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.


2019 ◽  
Vol 47 (W1) ◽  
pp. W456-W461 ◽  
Author(s):  
Mangesh Damre ◽  
Alessandro Marchetto ◽  
Alejandro Giorgetti

Abstract Atomistic molecular dynamics simulations of membrane proteins have been shown to be extremely useful for characterizing the molecular features underlying their function, but require high computational power, limiting the understanding of complex events in membrane proteins, e.g. ion channels gating, GPCRs activation. To overcome this issue, it has been shown that coarse-grained approaches, although requiring less computational power, are still capable of correctly describing molecular events underlying big conformational changes in biological systems. Here, we present the Martini coarse-grained membrane protein dynamics (MERMAID), a publicly available web interface that allows the user to prepare and run coarse-grained molecular dynamics (CGMD) simulations and to analyse the trajectories.


2021 ◽  
Vol 22 (16) ◽  
pp. 9026
Author(s):  
Kenta Renard ◽  
Bernadette Byrne

Membrane proteins exist within the highly hydrophobic membranes surrounding cells and organelles, playing key roles in cellular function. It is becoming increasingly clear that the membrane does not just act as an appropriate environment for these proteins, but that the lipids that make up these membranes are essential for membrane protein structure and function. Recent technological advances in cryogenic electron microscopy and in advanced mass spectrometry methods, as well as the development of alternative membrane mimetic systems, have allowed experimental study of membrane protein–lipid complexes. These have been complemented by computational approaches, exploiting the ability of Molecular Dynamics simulations to allow exploration of membrane protein conformational changes in membranes with a defined lipid content. These studies have revealed the importance of lipids in stabilising the oligomeric forms of membrane proteins, mediating protein–protein interactions, maintaining a specific conformational state of a membrane protein and activity. Here we review some of the key recent advances in the field of membrane protein–lipid studies, with major emphasis on respiratory complexes, transporters, channels and G-protein coupled receptors.


2021 ◽  
Vol 118 (46) ◽  
pp. e2113229118
Author(s):  
Radda Rusinova ◽  
Changhao He ◽  
Olaf S. Andersen

The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.


Sign in / Sign up

Export Citation Format

Share Document