scholarly journals A Multitubular Kidney-on-Chip to Decipher Pathophysiological Mechanisms in Renal Cystic Diseases

Author(s):  
Sarah Myram ◽  
Bastien Venzac ◽  
Brice Lapin ◽  
Aude Battistella ◽  
Fanny Cayrac ◽  
...  

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100–200 μm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1+/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1-/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1-/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.

2004 ◽  
Vol 52 (7) ◽  
pp. 931-942 ◽  
Author(s):  
Alex Soler-Jover ◽  
Juan Blasi ◽  
Inma Gómez de Aranda ◽  
Piedad Navarro ◽  
Maryse Gibert ◽  
...  

2003 ◽  
Vol 23 (7) ◽  
pp. 2600-2607 ◽  
Author(s):  
Ying Luo ◽  
Peter M. Vassilev ◽  
Xiaogang Li ◽  
Yoshifumi Kawanabe ◽  
Jing Zhou

ABSTRACT Mutations in polycystin 2 (PC2), a Ca2+-permeable cation channel, cause autosomal dominant polycystic kidney disease. Whether PC2 functions in the endoplasmic reticulum (ER) or in the plasma membrane has been controversial. Here we generated and characterized a polyclonal antibody against PC2, determined the subcellular localization of both endogenous and transfected PC2 by immunohistochemistry and biotinylation of cell surface proteins, and assessed PC2 channel properties with electrophysiology. Endogenous PC2 was found in the plasma membrane and the primary cilium of mouse inner medullar collecting duct (IMCD) cells and Madin-Darby canine kidney (MDCK) cells, whereas heterologously expressed PC2 showed a predominant ER localization. Patch-clamping of IMCD cells expressing endogenous or heterologous PC2 confirmed the presence of the channel on the plasma membrane. Treatment with chaperone-like factors facilitated the translocation of the PC2 channel to the plasma membrane from intracellular pools. The unitary conductances, channel kinetics, and other characteristics of both endogenously and heterologously expressed PC2 were similar to those described in our previous study in Xenopus laevis oocytes. These results show that PC2 functions as a plasma membrane channel in renal epithelia and suggest that PC2 contributes to Ca2+ entry and transport of other cations in defined nephron segments in vivo.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 490
Author(s):  
Merve Ustun ◽  
Sajjad Rahmani Dabbagh ◽  
Irem Sultan Ilci ◽  
Tugba Bagci-Onder ◽  
Savas Tasoglu

Glioma, as an aggressive type of cancer, accounts for virtually 80% of malignant brain tumors. Despite advances in therapeutic approaches, the long-term survival of glioma patients is poor (it is usually fatal within 12–14 months). Glioma-on-chip platforms, with continuous perfusion, mimic in vivo metabolic functions of cancer cells for analytical purposes. This offers an unprecedented opportunity for understanding the underlying reasons that arise glioma, determining the most effective radiotherapy approach, testing different drug combinations, and screening conceivable side effects of drugs on other organs. Glioma-on-chip technologies can ultimately enhance the efficacy of treatments, promote the survival rate of patients, and pave a path for personalized medicine. In this perspective paper, we briefly review the latest developments of glioma-on-chip technologies, such as therapy applications, drug screening, and cell behavior studies, and discuss the current challenges as well as future research directions in this field.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Sharath Sasi ◽  
Daniel Park ◽  
Maria A Zuriaga ◽  
Kenneth Walsh ◽  
Xinhua Yan ◽  
...  

Radiation-induced decreases in the number of bone marrow (BM)-derived endothelial progenitor cell (BM-EPCs) and their lineage precursors which include Early- and Late-Multi-Potent Progenitor cells (E-MPP and L-MPP) could contribute to the pathogenesis of ischemic and vascular diseases. We examined the effect of full-body single dose of proton (1H) at 0.5 Gy, 1 GeV and 0.15 Gy, 1 GeV/nucleon of iron (56Fe) - ionizing radiation (IR) on survival and proliferation of BM-EPCs. The survival of E-MPPs and L-MPPs in the BM after particle IR in C57BL/6 mice were determined at 1, 2, 4, 8, 12, 28 and 40 weeks post-IR. BM-derived mononuclear cells were triple-stained with RAM34 (CD34, c-kit, and Sca1), AC133, and hematopoietic lineage negative cocktail, then sorted by FASC for E- and L-MPP. BM EPCs ex-vivo - There was a transient 2.5-3.5-fold increase in BM-EPC apoptosis, with 3.5-fold increases for 56Fe and 1H at 5hrs and 24hrs, respectively that was no longer detected by day 7. Subsequently, there was a 3-fold increase in BM-EPC apoptosis on day 28 for both ion-IR mice. Compared to 24 hrs, there was a ~20% (1H) and ~45% (56Fe) increase in the rate of EPC proliferation on day 14 that returned to control levels on day 28. BM E-MPP and L-MPP in vivo - Compared to control mice, 1H-IR increased the number of both E-MPPs (665%) and L-MPPs (203%), whereas 56Fe-IR decreased E-MPP (74%) and L-MPPs (65%) at 1 week post-IR, suggesting stimulation by 1H but overt damage by 56Fe in the BM milieu. In 56Fe-IR mice, E-MPPs recovered between 4 and 12 weeks, followed by declines at later time points. In 1H-IR mice, E-MPPs were near control levels up to 4 weeks, but declined at later time points. The long-lasting and cyclical effects of IR on the BM E- and L-MPPs after a single 1H or 56Fe IR dose suggests the presence of prolonged and non-targeted effects in BM milieu, that occur in cells that were not traversed by IR, rather induced by signals from IR cells. Our studies showed that, both 1H- and 56Fe-IR has profound and long-lasting (28-40 months) negative effects on the number of E- and L-MPPs. Future longitudinal studies are necessary to determine whether BM progenitor cells may be affected after terrestrial IR exposure, such as cancer radiotherapy, CT and PET scans, and in astronauts after exploration-type space missions.


1992 ◽  
Vol 67 (01) ◽  
pp. 111-116 ◽  
Author(s):  
Marcel Levi ◽  
Jan Paul de Boer ◽  
Dorina Roem ◽  
Jan Wouter ten Cate ◽  
C Erik Hack

SummaryInfusion of desamino-d-arginine vasopressin (DDAVP) results in an increase in plasma plasminogen activator activity. Whether this increase results in the generation of plasmin in vivo has never been established.A novel sensitive radioimmunoassay (RIA) for the measurement of the complex between plasmin and its main inhibitor α2 antiplasmin (PAP complex) was developed using monoclonal antibodies preferentially reacting with complexed and inactivated α2-antiplasmin and monoclonal antibodies against plasmin. The assay was validated in healthy volunteers and in patients with an activated fibrinolytic system.Infusion of DDAVP in a randomized placebo controlled crossover study resulted in all volunteers in a 6.6-fold increase in PAP complex, which was maximal between 15 and 30 min after the start of the infusion. Hereafter, plasma levels of PAP complex decreased with an apparent half-life of disappearance of about 120 min. Infusion of DDAVP did not induce generation of thrombin, as measured by plasma levels of prothrombin fragment F1+2 and thrombin-antithrombin III (TAT) complex.We conclude that the increase in plasminogen activator activity upon the infusion of DDAVP results in the in vivo generation of plasmin, in the absence of coagulation activation. Studying the DDAVP induced increase in PAP complex of patients with thromboembolic disease and a defective plasminogen activator response upon DDAVP may provide more insight into the role of the fibrinolytic system in the pathogenesis of thrombosis.


Author(s):  
Kevin Bellofatto ◽  
Beat Moeckli ◽  
Charles-Henri Wassmer ◽  
Margaux Laurent ◽  
Graziano Oldani ◽  
...  

Abstract Purpose of Review β cell replacement via whole pancreas or islet transplantation has greatly evolved for the cure of type 1 diabetes. Both these strategies are however still affected by several limitations. Pancreas bioengineering holds the potential to overcome these hurdles aiming to repair and regenerate β cell compartment. In this review, we detail the state-of-the-art and recent progress in the bioengineering field applied to diabetes research. Recent Findings The primary target of pancreatic bioengineering is to manufacture a construct supporting insulin activity in vivo. Scaffold-base technique, 3D bioprinting, macro-devices, insulin-secreting organoids, and pancreas-on-chip represent the most promising technologies for pancreatic bioengineering. Summary There are several factors affecting the clinical application of these technologies, and studies reported so far are encouraging but need to be optimized. Nevertheless pancreas bioengineering is evolving very quickly and its combination with stem cell research developments can only accelerate this trend.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 866
Author(s):  
Luong Huu Dang ◽  
Yuan Tseng ◽  
How Tseng ◽  
Shih-Han Hung

In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized tracheal segments were assessed with vital staining, which showed that the core cartilage cells remarkably remained intact while the cells outside of the cartilage were no longer viable. The ability of the decellularized tracheal segments to evade immune rejection was evaluated through heterotopic implantation of the segments into the chest muscle of rabbits without any immunosuppressive therapy, which demonstrated no evidence of severe rejection or tissue necrosis under H&E staining, as well as the mechanical stability under stress-pressure testing. Finally, orthotopic transplantation of partially decellularized trachea with no immunosuppression treatment resulted in 2 months of survival in two rabbits and one long-term survival (2 years) in one rabbit. Through evaluations of posttransplantation histology and endoscopy, we confirmed that our partial decellularization method could be a potential method of producing low-immunogenic cartilage scaffolds with viable, functional core cartilage cells that can achieve long-term survival after in vivo transplantation.


1992 ◽  
Vol 20 (2) ◽  
pp. 218-221
Author(s):  
Henning F. Bjerregaard

An established epithelial cell line (A6) from a South African clawed toad (Xenopus laevis) kidney was used as a model for the corneal epithelium of the eye in order to determine ocular irritancy. When grown on Millipore filter inserts, A6 cells form a monolayer epithelium of high electrical resistance and generate a trans-epithelial potential difference. These two easily-measured electrophysiological endpoints showed a dose-related decrease after exposure for 24 hours to seven selected chemicals of different ocular irritancy potential. It was demonstrated that both trans-epithelial resistance and potential ranked closely with in vivo eye irritancy data and correlated well (r = 0.96) with loss of trans-epithelial impermeability of Madin-Darby canine kidney (MDCK) cells, detected by use of a fluorescein leakage assay.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3375
Author(s):  
Annabelle Vogt ◽  
Farsaneh Sadeghlar ◽  
Tiyasha H. Ayub ◽  
Carlo Schneider ◽  
Christian Möhring ◽  
...  

Dendritic cells (DC) as professional antigen presenting cells are able to prime T-cells against the tumor-associated antigen α-fetoprotein (AFP) for immunotherapy of hepatocellular carcinoma (HCC). However, a strong immunosuppressive tumor environment limits their efficacy in patients. The co-stimulation with CD40Ligand (CD40L) is critical in the maturation of DC and T-cell priming. In this study, the impact of intratumoral (i.t.) CD40L-expressing DC to improve vaccination with murine (m)AFP-transduced DC (Ad-mAFP-DC) was analyzed in subcutaneous (s.c.) and orthotopic murine HCC. Murine DC were adenovirally transduced with Ad-mAFP or Ad-CD40L. Hepa129-mAFP-cells were injected into the right flank or the liver of C3H-mice to induce subcutaneous (s.c.) and orthotopic HCC. For treatments, 106 Ad-mAFP-transduced DC were inoculated s.c. followed by 106 CD40L-expressing DC injected intratumorally (i.t.). S.c. inoculation with Ad-mAFP-transduced DC, as vaccine, induced a delay of tumor-growth of AFP-positive HCC compared to controls. When s.c.-inoculation of Ad-mAFP-DC was combined with i.t.-application of Ad-CD40L-DC synergistic antitumoral effects were observed and complete remissions and long-term survival in 62% of tumor-bearing animals were achieved. Analysis of the tumor environment at different time points revealed that s.c.-vaccination with Ad-mAFP-DC seems to stimulate tumor-specific effector cells, allowing an earlier recruitment of effector T-cells and a Th1 shift within the tumors. After i.t. co-stimulation with Ad-CD40L-DC, production of Th1-cytokines was strongly increased and accompanied by a robust tumor infiltration of mature DC, activated CD4+-, CD8+-T-cells as well as reduction of regulatory T-cells. Moreover, Ad-CD40L-DC induced tumor cell apoptosis. Intratumoral co-stimulation with CD40L-expressing DC significantly improves vaccination with Ad-mAFP-DC in pre-established HCC in vivo. Combined therapy caused an early and strong Th1-shift in the tumor environment as well as higher tumor apoptosis, leading to synergistic tumor regression of HCC. Thus, CD40L co-stimulation represents a promising tool for improving DC-based immunotherapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document