scholarly journals Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic

Author(s):  
Yunxi Liu ◽  
Yue Chen ◽  
Weidong Fei ◽  
Caihong Zheng ◽  
Yongquan Zheng ◽  
...  

Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.

Author(s):  
Christe Mary M ◽  
Sasikumar Swamiappan

Presently, various approaches have been exploited in the prolongation of gastric residence time which includes floating drug delivery system (FDDS), swelling and expanding systems, bio-adhesive systems, modified shape systems and high density systems. Among various methods, floating drug delivery system is considered to be a predominant method. Gastric emptying of dosage forms is an extremely varying process and ability to extend and control the emptying time is a valuable resource for the dosage forms. This FDDS is having the ability to provides a solution for this purpose. The FDDS is a bulk density system lower than the gastric fluid, so that the rest will float on the stomach contents for a prolonged period of time and allowing the drug to release slowly at a desired rate from the system and intensifies the bio-availability of the drug having narrow absorption window. The main intension of writing this review on floating drug delivery system is to study the mechanism of flotation to acheive the gastric retention and to discuss briefly about the background of FDDS, advantages and disadvantages, application of FDDS and factors affecting the gastric retension time.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Xiaoai Wu ◽  
Huawei Cai ◽  
Feng Qin ◽  
...  

Abstract:: As a group of heterocyclic macrocycle organic natural compounds occurring universally in animal tissues and plants, porphyrins are composed of four modified pyrrole subunits. Porphyrin analogues/derivatives possess multiple biochemical properties because of their unique structures and have been extensively investigated in cancer treatment. Studies have shown that porphyrins and their derivatives have the ability to locate in tumor cells in a variety of human cancers, and these compounds not only exhibit potent therapeutic effects as photodynamic agents but also show promising properties in medicinal imaging, such as MRI, photoacoustic imaging, fluorescence imaging and PET/SPECT imaging. This paper reviews the recent reports of porphyrin derivatives as therapeutic agents used in tumor therapies, such as sonodynamic therapy, photodynamic therapy and radiotherapy, as well as imaging agents for multimodality tumor imaging. The limitations of porphyrin-based compounds in tumor treatments and future prospects are also summarized.


2020 ◽  
Vol 13 (3) ◽  
pp. 230-241
Author(s):  
Ye Dai ◽  
Hui-Bing Zhang ◽  
Yun-Shan Qi

Background: Valves are an important part of nuclear power plants and are the control equipment used in nuclear power plants. It can change the cross-section of the passage and the flow direction of the medium and has the functions of diversion, cutoff, overflow, and the like. Due to the earthquake, the valve leaks, which will cause a major nuclear accident, endangering people's lives and safety. Objective: The purpose of this study is to synthesize the existing valve devices, summarize and analyze the advantages and disadvantages of various devices from many literatures and patents, and solve some problems of existing valves. Methods: This article summarizes various patents of nuclear-grade valve devices and recent research progress. From the valve structure device, transmission device, a detection device, and finally to the valve test, the advantages and disadvantages of the valve are comprehensively analyzed. Results: By summarizing the characteristics of a large number of valve devices, and analyzing some problems existing in the valves, the outlook for the research and design of nuclear power valves was made, and the planning of the national nuclear power strategic goals and energy security were planned. Conclusion: Valve damage can cause serious safety accidents. The most common is valve leakage. Therefore, the safety and reliability of valves must be taken seriously. By improving the transmission of the valve, the problems of complicated valve structure and high cost are solved.


2017 ◽  
Vol 6 (7) ◽  
pp. 5426 ◽  
Author(s):  
Hiren J. Patel ◽  
Vaishnavi P. Parikh

The pharmaceutical industry has faced several marked challenges in order to bring new chemical entities (NCEs) into the market over the past few decades. Various novel drug delivery approaches have been used as a part of life cycle management from which Osmotic drug delivery systems look the most promising one. After discussing the history of osmotic pump development, this article looks at the principles, advantages and disadvantages of osmotic drug delivery systems. Then, the basic components of osmotic pump and factors affecting the design of oral osmotic drug delivery systems are discussed in detail. In the later part of the manuscript, various types of osmotic pumps available in the market and evaluation methods for osmotic drug delivery systems are discussed in detail.


2016 ◽  
Vol 5 (01) ◽  
pp. 4723 ◽  
Author(s):  
Bhusnure O. G.* ◽  
Gholve V. S. ◽  
Sugave B. K. ◽  
Dongre R. C. ◽  
Gore S. A. ◽  
...  

Many researchers have attempted to use computer-aided design (C.A.D) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (D.D.S) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and D. D. Ss have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future. 3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fuelled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. Until recently, tablet designs had been restricted to the relatively small number of shapes that are easily achievable using traditional manufacturing methods. As 3D printing capabilities develop further, safety and regulatory concerns are addressed and the cost of the technology falls, contract manufacturers and pharmaceutical companies that experiment with these 3D printing innovations are likely to gain a competitive edge. This review compose the basics, types & techniques used, advantages and disadvantages of 3D printing


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 497
Author(s):  
Umme Ruman ◽  
Kalaivani Buskaran ◽  
Giorgia Pastorin ◽  
Mas Jaffri Masarudin ◽  
Sharida Fakurazi ◽  
...  

The formation of two nanodelivery systems, Sorafenib (SF)-loaded chitosan (SF-CS) and their folate-coated (SF-CS-FA) nanoparticles (NPs), were developed to enhance SF drug delivery on human Hepatocellular Carcinoma (HepG2) and Colorectal Adenocarcinoma (HT29) cell lines. The ionic gelation method was adopted to synthesize the NPs. The characterizations were performed by DLS, FESEM, TEM, XRD, TGA, FTIR, and UV-visible spectroscopy. It was found that 83.7 ± 2.4% and 87.9 ± 1.1% of encapsulation efficiency; 18.2 ± 1.3% and 19.9 ± 1.4% of loading content; 76.3 ± 13.7 nm and 81.6 ± 12.9 nm of hydrodynamic size; 60–80 nm and 70–100 nm of TEM; and FESEM sizes of near-spherical shape were observed, respectively, for SF-CS and SF-CS-FA nanoparticles. The SF showed excellent release from the nanoparticles under pH 4.8 PBS solution, indicating a good delivery system for tumor cells. The cytotoxicity study revealed their better anticancer action towards HepG2 and HT29 cell lines compared to the free sorafenib. Moreover, both NPs systems showed negligible toxicity to normal Human Dermal Fibroblast adult cells (HDFa). This is towards an enhanced anticancer drug delivery system with sustained-release properties for better cancer management.


2021 ◽  
Author(s):  
Zhiguo Li ◽  
Mingting Liu ◽  
Lingjie Ke ◽  
Li-Juan Wang ◽  
Caisheng Wu ◽  
...  

The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge....


2021 ◽  
Vol 11 (6) ◽  
pp. 2846
Author(s):  
Jong-ryul Choi ◽  
Juyoung Park

Techniques that increase the permeability of the cell membrane and transfer drugs or genes to cells have been actively developed as effective therapeutic modalities. Also, in line with the development of these drug delivery techniques, the establishment of tools to verify the techniques at the cellular level is strongly required. In this study, we demonstrated an optical imaging platform integrated with an ultrasound application system to verify the feasibility of safe and efficient drug delivery through the cell membrane using ultrasound-microbubble cavitation. To examine the potential of the platform, fluorescence images of both Fura-2 AM and propidium iodide (PI) to measure calcium flux changes and intracellular PI delivery, respectively, during and after the ultrasound-microbubble cavitation in the cervical cancer cell were acquired. Using the optical imaging platform, we determined that calcium flux increased immediately after the ultrasound-microbubble cavitation and were restored to normal levels, and fluorescence signals from intracellular PI increased gradually after the cavitation. The results acquired by the platform indicated that ultrasound-microbubble cavitation can deliver PI into the cervical cancer cell without irreversible damage of the cell membrane. The application of an additional fluorescent imaging module and high-speed imaging modalities can provide further improvement of the performance of this platform. Also, as additional studies in ultrasound instrumentations to measure real-time cavitation signals progress, we believe that the ultrasound-microbubble cavitation-based sonoporation can be employed for safe and efficient drug and gene delivery to various cancer cells.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2348
Author(s):  
Leon Riehakainen ◽  
Chiara Cavallini ◽  
Paolo Armanetti ◽  
Daniele Panetta ◽  
Davide Caramella ◽  
...  

Non-invasive longitudinal imaging of osseointegration of bone implants is essential to ensure a comprehensive, physical and biochemical understanding of the processes related to a successful implant integration and its long-term clinical outcome. This study critically reviews the present imaging techniques that may play a role to assess the initial stability, bone quality and quantity, associated tissue remodelling dependent on implanted material, implantation site (surrounding tissues and placement depth), and biomarkers that may be targeted. An updated list of biodegradable implant materials that have been reported in the literature, from metal, polymer and ceramic categories, is provided with reference to the use of specific imaging modalities (computed tomography, positron emission tomography, ultrasound, photoacoustic and magnetic resonance imaging) suitable for longitudinal and non-invasive imaging in humans. The advantages and disadvantages of the single imaging modality are discussed with a special focus on preclinical imaging for biodegradable implant research. Indeed, the investigation of a new implant commonly requires histological examination, which is invasive and does not allow longitudinal studies, thus requiring a large number of animals for preclinical testing. For this reason, an update of the multimodal and multi-parametric imaging capabilities will be here presented with a specific focus on modern biomaterial research.


Sign in / Sign up

Export Citation Format

Share Document