scholarly journals Visible Light-Activated Carbon Dots for Inhibiting Biofilm Formation and Inactivating Biofilm-Associated Bacterial Cells

Author(s):  
Xiuli Dong ◽  
Christopher M. Overton ◽  
Yongan Tang ◽  
Jasmine P. Darby ◽  
Ya-Ping Sun ◽  
...  

This study aimed to address the significant problems of bacterial biofilms found in medical fields and many industries. It explores the potential of classic photoactive carbon dots (CDots), with 2,2′-(ethylenedioxy)bis (ethylamine) (EDA) for dot surface functionalization (thus, EDA-CDots) for their inhibitory effect on B. subtilis biofilm formation and the inactivation of B. subtilis cells within established biofilm. The EDA-CDots were synthesized by chemical functionalization of selected small carbon nanoparticles with EDA molecules in amidation reactions. The inhibitory efficacy of CDots with visible light against biofilm formation was dependent significantly on the time point when CDots were added; the earlier the CDots were added, the better the inhibitory effect on the biofilm formation. The evaluation of antibacterial action of light-activated EDA-CDots against planktonic B. subtilis cells versus the cells in biofilm indicate that CDots are highly effective for inactivating planktonic cells but barely inactivate cells in established biofilms. However, when coupling with chelating agents (e.g., EDTA) to target the biofilm architecture by breaking or weakening the EPS protection, much enhanced photoinactivation of biofilm-associated cells by CDots was achieved. The study demonstrates the potential of CDots to prevent the initiation of biofilm formation and to inhibit biofilm growth at an early stage. Strategic combination treatment could enhance the effectiveness of photoinactivation by CDots to biofilm-associated cells.

2020 ◽  
Author(s):  
Jinju Chen

<p>Biofilm associated infections are the fourth leading cause of death worldwide, within the U.S. about 2 million annual cases lead to more than $5 billion USD in added medical costs per annum. Therefore, it is important to control biofilm growth and reduce the instances of infections.  Physical strategies, in particular the use of rationally designed surface topographies or surface energies, have present us with an interesting approach to prevent bacterial adherence and biofilm growth without the requirement for antimicrobials.</p> <p>A variety of natural surfaces exhibit antibacterial properties. Examples of such surfaces include rose petals with hierarchical structures and Nepenthes pitcher plants with slippery liquid-infused porous surfaces.  </p> <p>In this study, we fabricated different  biomimetic surfaces (rose-petal surfaces and slippery liquid-infused porous surfaces).   We have demonstrated that rose-petal surface can delay early stage P. aeruginosa and S. epidermidis biofilms formation (2 days) by about 70% and control  biofilm  formation according to surface structures.  The mechanisms of hierarchical structures  of rose-petal influence biofilm formation are two folds: 1) Papillae microstructure block  the bacterial clusters in between the valleys, limiting the potential for cell-cell communication via fibrous networks, thereby resulting in impaired biofilm growth. 2) The secondary structure (nano-folds) on microstructures can align bacterial cells within the constrained grooves, thereby delaying cell clusters formation during short term growth of biofilm.</p> <p>While, the slippery liquid-infused porous surface(s) can prevent over 90% P. aeruginosa and S. epidermidis biofilms formation for a duration of 6 days.  These are mainly attributed to their high contact angle and extreme low contact angle hysteresis.</p>


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2771
Author(s):  
Tobias Wieland ◽  
Julia Assmann ◽  
Astrid Bethe ◽  
Christian Fidelak ◽  
Helena Gmoser ◽  
...  

The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces. Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics targeting bacterial cells. The objective of this study was to establish a real-time method for the monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacteria were grown under static conditions on the surface of the sensor membrane, on which temperature oscillations generated by a heater structure were detected by an amorphous germanium thermistor. Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude change and phase shift. To our knowledge, the thermal measurement system has never been used to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to screen and evaluate bacterial adhesion inhibition of both known and novel AMPs.


2015 ◽  
Vol 61 (11) ◽  
pp. 827-836 ◽  
Author(s):  
Rossana de Aguiar Cordeiro ◽  
Rosana Serpa ◽  
Francisca Jakelyne de Farias Marques ◽  
Charlline Vládia Silva de Melo ◽  
Antonio José de Jesus Evangelista ◽  
...  

In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.


2006 ◽  
Vol 69 (10) ◽  
pp. 2411-2416 ◽  
Author(s):  
L. LAGACÉ ◽  
M. JACQUES ◽  
A. A. MAFU ◽  
D. ROY

The susceptibility of planktonic and biofilm cells of Pseudomonas marginalis toward four commonly used biocides at different temperatures (15 and 30°C) and biofilm growth times (24 and 48 h) was assessed. Using the MBEC biofilm device, biofilm production in maple sap was shown to be highly reproducible for each set of conditions tested. Biofilm formation was influenced by growth temperature and time. A temperature of 15°C and incubation time of 24 h yielded fewer CFU per peg and showed fewer adhered cells and typical biofilm structures, based on scanning electron microscopy observations as compared with other conditions. Minimal biofilm eradication concentration values for P. marginalis were significantly greater (P < 0.001) than were MBCs for planktonic cells and for every biocide tested, with the exception of minimal biofilm eradication concentration values for peracetic acid at 15°C and 24 h. Sodium hypochlorite and peracetic acid sanitizers were able to eliminate P. marginalis biofilms at lower concentrations as compared with hydrogen peroxide– and quaternary ammonium– based sanitizers (P < 0.001). According to the results obtained, sodium hypochlorite and peracetic acid sanitizers would be more appropriate for maple sap collection system sanitation.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Huan Gu ◽  
Sang Won Lee ◽  
Joseph Carnicelli ◽  
Zhaowei Jiang ◽  
Dacheng Ren

ABSTRACT Bacteria form complex multicellular structures on solid surfaces known as biofilms, which allow them to survive in harsh environments. A hallmark characteristic of mature biofilms is the high-level antibiotic tolerance (up to 1,000 times) compared with that of planktonic cells. Here, we report our new findings that biofilm cells are not always more tolerant to antibiotics than planktonic cells in the same culture. Specifically, Escherichia coli RP437 exhibited a dynamic change in antibiotic susceptibility during its early-stage biofilm formation. This phenomenon was not strain specific. Upon initial attachment, surface-associated cells became more sensitive to antibiotics than planktonic cells. By controlling the cell adhesion and cluster size using patterned E. coli biofilms, cells involved in the interaction between cell clusters during microcolony formation were found to be more susceptible to ampicillin than cells within clusters, suggesting a role of cell-cell interactions in biofilm-associated antibiotic tolerance. After this stage, biofilm cells became less susceptible to ampicillin and ofloxacin than planktonic cells. However, when the cells were detached by sonication, both antibiotics were more effective in killing the detached biofilm cells than the planktonic cells. Collectively, these results indicate that biofilm formation involves active cellular activities in adaption to the attached life form and interactions between cell clusters to build the complex structure of a biofilm, which can render these cells more susceptible to antibiotics. These findings shed new light on bacterial antibiotic susceptibility during biofilm formation and can guide the design of better antifouling surfaces, e.g., those with micron-scale topographic structures to interrupt cell-cell interactions. IMPORTANCE Mature biofilms are known for their high-level tolerance to antibiotics; however, antibiotic susceptibility of sessile cells during early-stage biofilm formation is not well understood. In this study, we aim to fill this knowledge gap by following bacterial antibiotic susceptibility during early-stage biofilm formation. We found that the attached cells have a dynamic change in antibiotic susceptibility, and during certain phases, they can be more sensitive to antibiotics than planktonic counterparts in the same culture. Using surface chemistry-controlled patterned biofilm formation, cell-surface and cell-cell interactions were found to affect the antibiotic susceptibility of attached cells. Collectively, these findings provide new insights into biofilm physiology and reveal how adaptation to the attached life form may influence antibiotic susceptibility of bacterial cells.


2020 ◽  
Vol 65 (10) ◽  
pp. 652-658
Author(s):  
U. M. Nemchenko ◽  
E. A. Kungurtseva ◽  
E. V. Grigorova ◽  
N. L. Belkova ◽  
Y. A. Markova ◽  
...  

The effect of bactericide Sekusept active (B SA), a peracetic acid-based preparation, on microbial strains, isolated from patients with severe infectious diseases who were treated in a regional children’s multi-specialty hospital, was studied. Based on the biochemical identification, the strains were classified as gram-negative non-fermenting bacteria (22 strains), Enterobacteriaceae family (18 strains), and bacilli - 3 strains. The biocidal activity of B SA was evaluated by the degree of inhibition of the growth of bacterial cells, existing in the planktonic form and in the form of biofilm (on a flat-bottomed plastic immunological tablet). It was shown that all the studied strains had the ability to biofilm formation, most of them (67,4%) formed moderately pronounced biofilms, and non-fermenting bacteria had a particularly pronounced coefficient of biofilm formation. The selected concentrations of B CA inhibited the growth of planktonic cells, and the ability of bactericide to prevent the formation of biofilms depended on the concentration (the most effective concentrations were 0,8 and 3,0%). Sensitivity of the strains existed in the aged biofilm to the bactericide was significantly lower, especially resistant to this effect were biofilms formed by non-fermenting bacteria and representatives of fam. Enterobacteriaceae. Our results confirm the importance of testing the effectiveness of biocides not only in accordance with standard methods developed for microorganisms in planktonic form, but also for biofilms.


2013 ◽  
Vol 57 (4) ◽  
pp. 1921-1925 ◽  
Author(s):  
Kenneth S. Brandenburg ◽  
Karien J. Rodriguez ◽  
Jonathan F. McAnulty ◽  
Christopher J. Murphy ◽  
Nicholas L. Abbott ◽  
...  

ABSTRACTBiofilm formation byPseudomonas aeruginosahas been implicated in the pathology of chronic wounds. Both thedandlisoforms of tryptophan inhibitedP. aeruginosabiofilm formation on tissue culture plates, with an equimolar ratio ofdandlisoforms producing the greatest inhibitory effect. Addition ofd-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation byP. aeruginosa.


2012 ◽  
Vol 78 (22) ◽  
pp. 7977-7984 ◽  
Author(s):  
Emma J. Robertson ◽  
Julie M. Wolf ◽  
Arturo Casadevall

ABSTRACTThe fungal pathogenCryptococcus neoformanscan grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogensin vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case ofC. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth byC. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth ofC. neoformansbiofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles.


2020 ◽  
Vol 8 (11) ◽  
pp. 1835
Author(s):  
Puja Yadav ◽  
Shalini Verma ◽  
Richard Bauer ◽  
Monika Kumari ◽  
Meenakshi Dua ◽  
...  

Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.


Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2408-2417 ◽  
Author(s):  
Timo A. Lehti ◽  
Philippe Bauchart ◽  
Johanna Heikkinen ◽  
Jörg Hacker ◽  
Timo K. Korhonen ◽  
...  

The mat (or ecp) fimbrial operon is ubiquitous and conserved in Escherichia coli, but its functions remain poorly described. In routine growth media newborn meningitis isolates of E. coli express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed E. coli common pilus (ECP), at 20 °C, and here we show that the six-gene (matABCDEF)-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The matBCDEF deletion mutant of meningitis E. coli IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient E. coli K-12 cells to form biofilm at 20 °C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 °C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 °C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved mat locus in E. coli genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of E. coli.


Sign in / Sign up

Export Citation Format

Share Document