scholarly journals Circular RNA: Biosynthesis in vitro

Author(s):  
Xinjie Chen ◽  
Yuan Lu

Circular RNA (circRNA) is a unique type of noncoding RNA molecule. Compared with traditional linear RNA, circRNA is a covalently closed circle produced by a process called backsplicing. CircRNA is abundant in many cells and has rich functions in cells, such as acting as miRNA sponge, protein sponge, protein scaffold, and mRNA regulator. With the continuous development of circRNA study, circRNA has also played an important role in medical applications, including circRNA vaccines and gene therapy. In this review, we illustrate the synthesis of circRNAs in vitro. We focus on biological ligation methods, such as enzymatic ligation from the bacteriophage T4 and ribozyme method. In addition, we summarize the current challenges in the design, synthesis, application, and production of circRNAs, and propose possible solutions in the future. CircRNA is expected to play an essential role in basic research and medical applications.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Na Fang ◽  
Yijun Shi ◽  
Yu Fan ◽  
Tao Long ◽  
Yongqian Shu ◽  
...  

Circular RNA (circRNA) is an endogenous noncoding RNA. Accumulative investigations have confirmed that circRNAs play a vital role in carcinogenesis and tumor progression. Herein, we examined the expression and mechanism of circ_0072088 in esophageal squamous cell carcinoma (ESCC). As a result, circ_0072088 was significantly overexpressed in ESCC tissues and cells, which was closely associated with tumor size, invasion depth, clinical stage, and lymph node metastasis of esophageal cancer. Nuclear and cytoplasmic separation as well as FISH assays showed that circ_0072088 was mainly localized in the cytoplasm of ESCC cells. RNase R treatment assay revealed that circ_0072088 was steadier than linear ZFR mRNA. circ_0072088 promoted ESCC cell proliferation, migration and invasion in vitro, and cell proliferation in vivo. Mechanistically, circ_0072088 upregulated VEGF gene expression by acting as the sponge of miRNA-377. In conclusion, circ_0072088 might be used as a diagnostic biomarker and therapeutic target for ESCC.


2021 ◽  
Vol 14 (S2) ◽  
Author(s):  
Minhui Zhuang ◽  
Jian Zhao ◽  
Jing Wu ◽  
Shilong Fu ◽  
Ping Han ◽  
...  

Abstract Background Ovarian serous cystadenocarcinoma is one of the most serious gynecological malignancies. Circular RNA (circRNA) is a type of noncoding RNA with a covalently closed continuous loop structure. Abnormal circRNA expression might be associated with tumorigenesis because of its complex biological mechanisms by, for example, functioning as a microRNA (miRNA) sponge. However, the circRNA expression profile in ovarian serous cystadenocarcinoma and their associations with other RNAs have not yet been characterized. The main purpose of this study was to reveal the circRNA expression profile in ovarian serous cystadenocarcinoma. Methods We collected six specimens from three patients with ovarian serous cystadenocarcinoma and adjacent normal tissues. After RNA sequencing, we analyzed the expression of circRNAs with relevant mRNAs and miRNAs to characterize potential function. Results 15,092 unique circRNAs were identified in six specimens. Approximately 46% of these circRNAs were not recorded in public databases. We then reported 353 differentially expressed circRNAs with oncogenes and tumor-suppressor genes. Furthermore, a conjoint analysis with relevant mRNAs revealed consistent changes between circRNAs and their homologous mRNAs. Overall, construction of a circRNA–miRNA network suggested that 4 special circRNAs could be used as potential biomarkers. Conclusions Our study revealed the circRNA expression profile in the tissues of patients with ovarian serous cystadenocarcinoma. The differential expression of circRNAs was thought to be associated with ovarian serous cystadenocarcinoma in the enrichment analysis, and co-expression analysis with relevant mRNAs and miRNAs illustrated the latent regulatory network. We also constructed a complex circRNA–miRNA interaction network and then demonstrated the potential function of certain circRNAs to aid future diagnosis and treatment.


2020 ◽  
Author(s):  
Hanqin Weng ◽  
Linhui Cao ◽  
Xiaochun Chen ◽  
Liqing Ye ◽  
Weijian Feng ◽  
...  

Abstract Background: Circular RNA (circRNA) is a novel subclass of noncoding-RNA molecules that participate in development and progression of a variety of human diseases via sponging microRNAs (miRNAs). Until now, the contributions of circRNAs in chemoresistance of hepatocellular carcinoma (HCC) remain largely unknown.Methods: In the present study, we aimed to investigate the role of circRNA in cisplatin resistance of HCC. We investigated the expression of circRNAs in 5 paired cisplatin-sensitive and cisplatin-resistant HCC tissues by microarray analysis. The qRT-PCR analysis was to investigate the expression pattern of circARNT2 in HCC patient tissues and cell lines. Then, the effects of circARNT2 on cisplatin resistance, cell proliferation, and apoptosis were assessed in HCC in vitro and in vivo.Results: CircARNT2 was significantly upregulated in HCC tissues and cell lines. Overexpression of circARNT2 in HCC was significantly correlated with aggressive characteristics and served as an independent risk factor for overall survival in patients with HCC. In vitro experiments showed that knockdown of circARNT2 inhibited cell proliferation and enhances the cisplatin sensitivity of HCC cells. Furthermore, circARNT2 facilitates HCC progression in vivo. We demonstrated that circARNT2 acts as a sponge for miR-155-5p and verified that PDK1 is a novel target of miR-155-5p.Conclusion: In summary, our study demonstrated that circARNT2 modulates cisplatin resistance through miR-155-5p/PDK1 pathway. Our findings indicated that circARNT2 may serve as a promising therapeutic target for overcoming cisplatin resistance for HCC.


2019 ◽  
Vol 400 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Junyao Ding ◽  
Wenhu Zhou ◽  
Xiaojing Li ◽  
Meng Sun ◽  
Jingsong Ding ◽  
...  

Abstract Circular RNA (circRNA) play a crucial role in many biological processes and have been proved as potential biomarkers and therapeutic targets in many diseases. Manipulation of their expression is a critical task. In this study, we developed a new strategy for circRNA suppression with DNAzyme. Data showed single-digestion DNAzymes cleaved circRNA efficiently in vitro but not in cell culture. However, tandem DNAzymes for double digestion showed higher cleavage efficacy both in vitro and in cell culture. Functional study demonstrated that double-digestion DNAzymes suppressed the miRNA sponge function of circRNA and changed the proliferation and migration rates of HCC cells.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Hua Guan ◽  
Wei Luo ◽  
Yuping Liu ◽  
Mingfei Li

AbstractIncreasing evidence has indicated the great diagnostic and therapeutic potentials of circular RNAs (circRNAs) in human cancers. Although the biological roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) have been partially annotated, the potential regulatory mechanism of circRNAs in PDAC tumorigenesis remains poorly understood. Here, our study found that the novel circRNA circSLIT2 was significantly upregulated in PDAC tissues and cells. Clinically, ectopic high-expression of circSLIT2 was correlated with unfavorable prognosis of PDAC patients. Functional experiments demonstrated that circSLIT2 promoted the aerobic glycolysis and proliferation of PDAC cells in vitro, and circSLIT2 knockdown inhibited tumor growth in vivo. Mechanistically, circSLIT2 acted as miRNA sponge to target miR-510-5p/c-Myc axis. Furthermore, c-Myc bound with the promoter region of lactate dehydrogenase A (LDHA) to activate the transcription. Collectively, present findings reveal that circSLIT2/miR-510-5p/c-Myc/LDHA axis participates in the aerobic glycolysis and carcinogenesis of PDAC, and may act as a promising therapeutic target.


2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


Sign in / Sign up

Export Citation Format

Share Document