scholarly journals Host Antiviral Response Suppresses Ciliogenesis and Motile Ciliary Functions in the Nasal Epithelium

Author(s):  
Qianmin Chen ◽  
Kai Sen Tan ◽  
Jing Liu ◽  
Hsiao Hui Ong ◽  
Suizi Zhou ◽  
...  

BackgroundRespiratory viral infections are one of the main drivers of development and exacerbation for chronic airway inflammatory diseases. Increased viral susceptibility and impaired mucociliary clearance are often associated with chronic airway inflammatory diseases and served as risk factors of exacerbations. However, the links between viral susceptibility, viral clearance, and impaired mucociliary functions are unclear. Therefore, the objective of this study is to provide the insights into the effects of improper clearance of respiratory viruses from the epithelium following infection, and their resulting persistent activation of antiviral response, on mucociliary functions.MethodsIn order to investigate the effects of persistent antiviral responses triggered by viral components from improper clearance on cilia formation and function, we established an in vitro air–liquid interface (ALI) culture of human nasal epithelial cells (hNECs) and used Poly(I:C) as a surrogate of viral components to simulate their effects toward re-epithelization and mucociliary functions of the nasal epithelium following damages from a viral infection.ResultsThrough previous and current viral infection expression data, we found that respiratory viral infection of hNECs downregulated motile cilia gene expression. We then further tested the effects of antiviral response activation on the differentiation of hNECs using Poly(I:C) stimulation on differentiating human nasal epithelial stem/progenitor cells (hNESPCs). Using this model, we observed reduced ciliated cell differentiation compared to goblet cells, reduced protein and mRNA in ciliogenesis-associated markers, and increased mis-assembly and mis-localization of ciliary protein DNAH5 following treatment with 25 μg/ml Poly(I:C) in differentiating hNECs. Additionally, the cilia length and ciliary beat frequency (CBF) were also decreased, which suggest impairment of ciliary function as well.ConclusionOur results suggest that the impairments of ciliogenesis and ciliary function in hNECs may be triggered by specific expression of host antiviral response genes during re-epithelization of the nasal epithelium following viral infection. This event may in turn drive the development and exacerbation of chronic airway inflammatory diseases.

2018 ◽  
Vol 293 (47) ◽  
pp. 18168-18179 ◽  
Author(s):  
Yaqin Zhou ◽  
Zhangchuan Xia ◽  
Zhikui Cheng ◽  
Gang Xu ◽  
Xiaodan Yang ◽  
...  

MicroRNA (miR)-590-5p has been identified as an important regulator of some signaling pathways such as cell proliferation and tumorigenesis. However, little is known about its role during viral infection. Here, we report that miR-590-5p was significantly induced by various viruses and effectively potentiated virus replication in different viral infection systems. Furthermore, miR-590-5p substantially attenuated the virus-induced expression of type I and type III interferons (IFNs) and inflammatory cytokines, resulting in impaired downstream antiviral signaling. Interleukin-6 receptor (IL6R) was identified as a target of miR-590-5p. Interestingly, the role of miR-590-5p in virus-triggered signaling was abolished in IL6R knockout cells, and this could be rescued by restoring the expression of the soluble IL6R (sIL6R) but not the membrane-bound IL6R (mIL6R), suggesting that sIL6R is indispensable for miR-590-5p in modulating the host antiviral response. Furthermore, miR-590-5p down-regulated endogenous sIL6R and mIL6R expression through a translational repression mechanism. These findings thus uncover a previously uncharacterized role and the underlying mechanism of miR-590-5p in the innate immune response to viral infection.


2016 ◽  
Vol 90 (14) ◽  
pp. 6344-6364 ◽  
Author(s):  
Carolina Stenfeldt ◽  
Michael Eschbaumer ◽  
Steven I. Rekant ◽  
Juan M. Pacheco ◽  
George R. Smoliga ◽  
...  

ABSTRACTThe pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical divergence between FMDV carriers and animals that cleared the infection had occurred by 10 days postinfection (dpi) in vaccinated cattle and by 21 dpi in nonvaccinated animals. The anatomic distribution of virus in subclinically infected, vaccinated cattle was restricted to the pharynx throughout both the early and the persistent phases of infection. In nonvaccinated cattle, systemically disseminated virus was cleared from peripheral sites by 10 dpi, while virus selectively persisted within the nasopharynx of a subset of animals. The quantities of viral RNA shed in oropharyngeal fluid during FMDV persistence were similar in vaccinated and nonvaccinated cattle. FMDV structural and nonstructural proteins were localized to follicle-associated epithelium of the dorsal soft palate and dorsal nasopharynx in persistently infected cattle. Host transcriptome analysis of tissue samples processed by laser capture microdissection indicated suppression of antiviral host factors (interferon regulatory factor 7, CXCL10 [gamma interferon-inducible protein 10], gamma interferon, and lambda interferon) in association with persistent FMDV. In contrast, during the transitional phase of infection, the level of expression of IFN-λ mRNA was higher in follicle-associated epithelium of animals that had cleared the infection. This work provides novel insights into the intricate mechanisms of FMDV persistence and contributes to further understanding of this critical aspect of FMDV pathogenesis.IMPORTANCEThe existence of a prolonged, asymptomatic carrier state is a political impediment for control and potential eradication of foot-and-mouth disease (FMD). When FMD outbreaks occur, they are often extinguished by massive depopulation of livestock due to the fear that some animals may have undiagnosed subclinical infection, despite uncertainty over the biological relevance of FMD virus (FMDV) persistence. The work described here elucidates aspects of the FMDV carrier state in cattle which may facilitate identification and/or abrogation of asymptomatic FMDV infection. The divergence between animals that clear infection and those that develop persistent infection was demonstrated to occur earlier than previously established. The host antiviral response in tissues maintaining persistent FMDV was downregulated, whereas upregulation of IFN-λ mRNA was found in the epithelium of cattle that had recently cleared the infection. This suggests that the clearing of FMDV infection is associated with an enhanced mucosal antiviral response, whereas FMDV persistence is associated with suppression of the host antiviral response.


2019 ◽  
Author(s):  
Paulino Barragan-Iglesias ◽  
Úrzula Franco-Enzástiga ◽  
Vivekanand Jeevakumar ◽  
Andi Wangzhou ◽  
Vinicio Granados-Soto ◽  
...  

ABSTRACTOne of the first signs of viral infection is body-wide aches and pain. While this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization are well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-β) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I interferons stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENTIt is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. While specific mechanisms have been discovered for diverse bacteria and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type 1 interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling) that is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity


2021 ◽  
Author(s):  
Alberto Gomez-Carballa ◽  
Irene Rivero-Calle ◽  
Jacobo Pardo-Seco ◽  
Jose Gomez-Rial ◽  
Carmen Rivero-Velasco ◽  
...  

Background: COVID-19 symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. Methods and findings: We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. We then used a differential expression approach and pathways analysis to detect tissue specific immune severity signals in COVID-19 patients. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were shown in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Conclusions: We found severity-related signatures in patient tissues mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.


2020 ◽  
Vol 121 ◽  
pp. 136-143
Author(s):  
Ashutosh Vats ◽  
Devika Gautam ◽  
Jitendra Maharana ◽  
Jatinder Singh Chera ◽  
Sushil Kumar ◽  
...  

PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yongchun Shen ◽  
Lei Chen ◽  
Tao Wang ◽  
Fuqiang Wen

Airway mucus hypersecretion (AMH) is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγis expressed in structural, immune, and inflammatory cells in the lung. PPARγis involved in mucin production, and PPARγagonists can inhibit mucin synthesis bothin vitroandin vivo. These findings suggest that PPARγis a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 2 ◽  
Author(s):  
Jikai Zhang ◽  
Zhijie Li ◽  
Jiapei Huang ◽  
Hang Yin ◽  
Jin Tian ◽  
...  

In response to viral infection, host cells activate various antiviral responses to inhibit virus replication. While feline herpesvirus 1 (FHV-1) manipulates the host early innate immune response in many different ways, the host could activate the antiviral response to counteract it through some unknown mechanisms. MicroRNAs (miRNAs) which serve as a class of regulatory factors in the host, participate in the regulation of the host innate immune response against virus infection. In this study, we found that the expression levels of miR-26a were significantly upregulated upon FHV-1 infection. Furthermore, FHV-1 infection induced the expression of miR-26a via a cGAS-dependent pathway, and knockdown of cellular cGAS significantly blocked the expression of miR-26a induced by poly (dA:dT) or FHV-1 infection. Next, we investigated the biological function of miR-26a during viral infection. miR-26a was able to increase the phosphorylation of STAT1 and promote type I IFN signaling, thus inhibiting viral replication. The mechanism study showed that miR-26a directly targeted host SOCS5. Knockdown of SOCS5 increased the phosphorylation of STAT1 and enhanced the type I IFN-mediated antiviral response, and overexpression of suppressor of the cytokine signalling 5 (SOCS5) decreased the phosphorylation of STAT1 and inhibited the type I IFN-mediated antiviral response. Meanwhile, with the knockdown of SOCS5, the upregulated expression of phosphorylated STAT1 and the anti-virus effect induced by miR-26a were significantly inhibited. Taken together, our data demonstrated a new strategy of host miRNAs against FHV-1 infection by enhancing IFN antiviral signaling.


2011 ◽  
Vol 434 (1) ◽  
pp. e1-e2 ◽  
Author(s):  
Luke A. J. O'Neill

The human IKK [IκB (inhibitor of NF-κB) kinase] family has four members; they are the central kinases of innate immunity. Two members, IKKα and IKKβ, the so-called canonical members, phosphoryate IκBα, leading to activation of the transcription factor NF-κB (nuclear factor κB), which controls the expression of many immune and inflammatory genes. The IKK-related proteins TBK-1 (TANK-binding kinase 1) and IKKϵ have a different substrate – IRF3 (interferon regulatory factor 3) – which regulates a different set of genes, the products of which include Type I interferons. Toll-like receptors (TLRs) such as the lipopolysaccharide receptor TLR4 or the poly(I:C) receptor TLR3 activate each of the IKKs, but the pro-inflammatory cytokine IL-1 (interleukin 1), which signals in a broadly similar way to the TLRs, has so far been shown to activate only the canonical IKKs. In this issue of the Biochemical Journal, Clark et al. bring new insights into the regulation of IKKs. They demonstrate that IL-1 is in fact able to activate IKKϵ/TBK-1, which occurs via IKKα/IKKβ. The consequence of this is not IRF3 activation, but a negative feedback effect on IKKα/IKKβ. This provides us with yet another regulatory feedback loop in a system already replete with control mechanisms. It attests yet again to the importance of keeping these innate immune pathways in check, since if they proceed uncontrolled, inflammatory diseases can occur. Importantly, this study utilized new and specific inhibitors of these kinases, suggesting that the interpretation of any effects the compound might have in vivo may be complex, since for example the inhibition of IKKϵ/TBK-1 might actually have a pro-inflammatory effect.


2006 ◽  
Vol 80 (1) ◽  
pp. 218-225 ◽  
Author(s):  
Paul T. Sobol ◽  
Karen L. Mossman

ABSTRACT The classical interferon (IFN)-dependent antiviral response to viral infection involves the regulation of IFN-stimulated genes (ISGs), one being the gene encoding cellular endoribonuclease RNase L, which arrests protein synthesis and induces apoptosis by nonspecifically cleaving rRNA. Recently, the herpes simplex virus type 1 (HSV-1) protein ICP0 has been shown to block the induction of ISGs by subverting the IFN pathway upstream of the 2′-5′-oligoadenylate synthetase (OAS)/RNase L pathway. We report that ICP0 also prevents rRNA degradation at late stages of HSV-1 infection, independent of its E3 ubiquitin ligase activity, and that the resultant rRNA degradation is independent of the classical RNase L antiviral pathway. Moreover, the degradation is independent of the viral RNase vhs and is independent of IFN response factor 3. These studies indicate the existence of another, previously unidentified, RNase that is part of the host antiviral response to viral infection.


Sign in / Sign up

Export Citation Format

Share Document