scholarly journals Structural and Functional Dysbiosis of Fecal Microbiota in Chinese Patients With Alzheimer's Disease

Author(s):  
Zongxin Ling ◽  
Manlian Zhu ◽  
Xiumei Yan ◽  
Yiwen Cheng ◽  
Li Shao ◽  
...  

Increasing evidence suggests that gut dysbiosis plays vital roles in a variety of gut–brain disorders, such as Alzheimer's disease (AD). However, alterations of the gut microbiota as well as their correlations with cognitive scores and host immunity have remained unclear in well-controlled trials on Chinese AD patients. In this study, samples from 100 AD patients, and 71 age- and gender-matched, cognitively normal controls were obtained to explore the structural and functional alterations of the fecal microbiota targeting the V3–V4 region of the 16S rRNA gene by MiSeq sequencing, and to analyze their associations with clinical characteristics. Our data demonstrated a remarkably reduction in the bacterial diversity and alterations in the taxonomic composition of the fecal microbiota of the AD patients. Interestingly, the abundant butyrate-producing genera such as Faecalibacterium decreased significantly, where this was positively correlated with such clinical indicators as the MMSE, WAIS, and Barthel scores in the AD patients. On the contrary, abundant lactate-producing genera, such as Bifidobacterium, increased prominently, and were inversely correlated with these indicators. This shift in the gut dysbiosis of the microbiota, from being butyrate producers to lactate producers, contributed to immune disturbances in the host that could be used as non-invasive biomarkers to distinguish the controls from the AD patients. Moreover, several predicted functional modules, including the biosynthesis and the metabolism of fatty acids, that were altered in the microbiota of the AD patients could be utilized by the bacteria to produce immunomodulatory metabolites. Our study established the structural and functional dysbiosis of fecal microbiota in AD patients, and the results suggest the potential for use of gut bacteria for the early, non-invasive diagnosis of AD, personalized treatment, and the development of tailor-made probiotics designed for Chinese AD patients.

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianxiong Xi ◽  
Ding Ding ◽  
Huiwei Zhu ◽  
Ruru Wang ◽  
Feng Su ◽  
...  

Abstract Background Gut microbiota (GMB) alteration has been reported to influence the Alzheimer’s disease (AD) pathogenesis through immune, endocrine, and metabolic pathways. This study aims to investigate metabolic output of the dysbiosis of GMB in AD pathogenesis. In this study, the fecal microbiota and metabolome from 21 AD participants and 44 cognitively normal control participants were measured. Untargeted GMB taxa was analyzed through 16S ribosomal RNA gene profiling based on next-generation sequencing and fecal metabolites were quantified by using ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Results Our analysis revealed that AD was characterized by 15 altered gut bacterial genera, of which 46.7% (7/15 general) was significantly associated with a series of metabolite markers. The predicted metabolic profile of altered gut microbial composition included steroid hormone biosynthesis, N-Acyl amino acid metabolism and piperidine metabolism. Moreover, a combination of 2 gut bacterial genera (Faecalibacterium and Pseudomonas) and 4 metabolites (N-Docosahexaenoyl GABA, 19-Oxoandrost-4-ene-3,17-dione, Trigofoenoside F and 22-Angeloylbarringtogenol C) was able to discriminate AD from NC with AUC of 0.955 in these 65 subjects. Conclusions These findings demonstrate that gut microbial alterations and related metabolic output changes may be associated with pathogenesis of AD, and suggest that fecal markers might be used as a non-invasive examination to assist screening and diagnosis of AD.


Author(s):  
Zongxin Ling ◽  
Manlian Zhu ◽  
Xia Liu ◽  
Li Shao ◽  
Yiwen Cheng ◽  
...  

Gut bacterial dysbiosis plays a vital role in the development of Alzheimer’s disease (AD). However, our understanding of alterations to the gut fungal microbiota and their correlations with host immunity in AD is still limited. Samples were obtained from 88 Chinese patients with AD, and 65 age- and gender-matched, cognitively normal controls. Using these samples, we investigated the fungal microbiota targeting internal transcribed spacer 2 (ITS2) rRNA genes using MiSeq sequencing, and analyzed their associations with the host immune response. Our data demonstrated unaltered fungal diversity but altered taxonomic composition of the fecal fungal microbiota in the AD patients. The analysis of the fungal microbiota was performed using 6,585,557 high-quality reads (2,932,482 reads from the controls and 3,653,075 from the AD patients), with an average of 43,042 reads per sample. We found that several key differential fungi such as Candida tropicalis and Schizophyllum commune were enriched in the AD patients, while Rhodotorula mucilaginosa decreased significantly. Interestingly, C. tropicalis and S. commune were positively correlated with IP-10 and TNF-α levels. In contrast, C. tropicalis was negatively correlated with IL-8 and IFN-γ levels, and R. mucilaginosa was negatively correlated with TNF-α level. PiCRUSt analysis revealed that lipoic acid metabolism, starch and sucrose metabolism were significantly decreased in the AD fungal microbiota. This study is the first to demonstrate fecal fungal dysbiosis in stable AD patients at a deeper level, and to identify the key differential fungi involved in regulating host systemic immunity. The analysis of the fungal microbiota in AD performed here may provide novel insights into the etiopathogenesis of AD and pave the way for improved diagnosis and treatment of AD.


2020 ◽  
Vol 57 (12) ◽  
pp. 5026-5043 ◽  
Author(s):  
Shan Liu ◽  
Jiguo Gao ◽  
Mingqin Zhu ◽  
Kangding Liu ◽  
Hong-Liang Zhang

Abstract Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.


Author(s):  
Ellen E. H. Johnson ◽  
Claire Alexander ◽  
Grace J. Lee ◽  
Kaley Angers ◽  
Diarra Ndiaye ◽  
...  

2021 ◽  
pp. 1-30
Author(s):  
Claudio Babiloni ◽  
Raffaele Ferri ◽  
Giuseppe Noce ◽  
Roberta Lizio ◽  
Susanna Lopez ◽  
...  

Background: In relaxed adults, staying in quiet wakefulness at eyes closed is related to the so-called resting state electroencephalographic (rsEEG) rhythms, showing the highest amplitude in posterior areas at alpha frequencies (8–13 Hz). Objective: Here we tested the hypothesis that age may affect rsEEG alpha (8–12 Hz) rhythms recorded in normal elderly (Nold) seniors and patients with mild cognitive impairment due to Alzheimer’s disease (ADMCI). Methods: Clinical and rsEEG datasets in 63 ADMCI and 60 Nold individuals (matched for demography, education, and gender) were taken from an international archive. The rsEEG rhythms were investigated at individual delta, theta, and alpha frequency bands, as well as fixed beta (14–30 Hz) and gamma (30–40 Hz) bands. Each group was stratified into three subgroups based on age ranges (i.e., tertiles). Results: As compared to the younger Nold subgroups, the older one showed greater reductions in the rsEEG alpha rhythms with major topographical effects in posterior regions. On the contrary, in relation to the younger ADMCI subgroups, the older one displayed a lesser reduction in those rhythms. Notably, the ADMCI subgroups pointed to similar cerebrospinal fluid AD diagnostic biomarkers, gray and white matter brain lesions revealed by neuroimaging, and clinical and neuropsychological scores. Conclusion: The present results suggest that age may represent a deranging factor for dominant rsEEG alpha rhythms in Nold seniors, while rsEEG alpha rhythms in ADMCI patients may be more affected by the disease variants related to earlier versus later onset of the AD.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Aidan Kenny ◽  
Eva M. Jiménez-Mateos ◽  
María Ascensión Zea-Sevilla ◽  
Alberto Rábano ◽  
Pablo Gili-Manzanaro ◽  
...  

Abstract Alzheimer’s disease (AD) is characterized by a progressive loss of neurons and cognitive functions. Therefore, early diagnosis of AD is critical. The development of practical and non-invasive diagnostic tests for AD remains, however, an unmet need. In the present proof-of-concept study we investigated tear fluid as a novel source of disease-specific protein and microRNA-based biomarkers for AD development using samples from patients with mild cognitive impairment (MCI) and AD. Tear protein content was evaluated via liquid chromatography-mass spectrometry and microRNA content was profiled using a genome-wide high-throughput PCR-based platform. These complementary approaches identified enrichment of specific proteins and microRNAs in tear fluid of AD patients. In particular, we identified elongation initiation factor 4E (eIF4E) as a unique protein present only in AD samples. Total microRNA abundance was found to be higher in tears from AD patients. Among individual microRNAs, microRNA-200b-5p was identified as a potential biomarker for AD with elevated levels present in AD tear fluid samples compared to controls. Our study suggests that tears may be a useful novel source of biomarkers for AD and that the identification and verification of biomarkers within tears may allow for the development of a non-invasive and cost-effective diagnostic test for AD.


Sign in / Sign up

Export Citation Format

Share Document