scholarly journals Mechanisms of Apoptosis-Related Long Non-coding RNAs in Ovarian Cancer

Author(s):  
Toshihiko Takeiwa ◽  
Kazuhiro Ikeda ◽  
Kuniko Horie-Inoue ◽  
Satoshi Inoue

Ovarian cancer is a health-threatening malignancy of ovary in female reproductive systems and one of the most common gynecological malignancies worldwide. Due to rare early symptoms, ovarian cancers are often diagnosed at advanced stages and exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic and therapeutic strategies for the disease. Recent studies have presented that some long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells through various mechanisms involved in the regulation of transcription factors, histone modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In this review, we introduce the recent findings in regard to the molecular mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.

2019 ◽  
Vol 19 (6) ◽  
pp. 449-467
Author(s):  
Zhiquan Liang ◽  
Ziwen Lu ◽  
Yafei Zhang ◽  
Dongsheng Shang ◽  
Ruyan Li ◽  
...  

Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.


2019 ◽  
Vol 20 (10) ◽  
pp. 2443 ◽  
Author(s):  
Yeon Kyu Lee ◽  
Jinyeong Lim ◽  
So Young Yoon ◽  
Jong Cheon Joo ◽  
Soo Jung Park ◽  
...  

Ovarian cancer is the gynecological malignancy with the poorest prognosis, in part due to its high incidence of recurrence. Platinum agents are widely used as a first-line treatment against ovarian cancer. Recurrent tumors, however, frequently demonstrate acquired chemo-resistance to platinum agent toxicity. To improve chemo-sensitivity, combination chemotherapy regimens have been investigated. This study examined anti-tumor effects and molecular mechanisms of cytotoxicity of Oldenlandia diffusa (OD) extracts on ovarian cancer cells, in particular, cells resistant to cisplatin. Six ovarian cancer cells including A2780 and cisplatin-resistant A2780 (A2780cis) as representative cell models were used. OD was extracted with water (WOD) or 50% methanol (MOD). MOD significantly induced cell death in both cisplatin-sensitive cells and cisplatin-resistant cells. The combination treatment of MOD with cisplatin reduced viability in A2780cis cells more effectively than treatment with cisplatin alone. MOD in A2780cis cells resulted in downregulation of the epigenetic modulator KDM1B and the DNA repair gene DCLRE1B. Transcriptional suppression of KDM1B and DCLRE1B induced cisplatin sensitivity. Knockdown of KDM1B led to downregulation of DCLRE1B expression, suggesting that DCLRE1B was a KDM1B downstream target. Taken together, OD extract effectively promoted cell death in cisplatin-resistant ovarian cancer cells under cisplatin treatment through modulating KDM1B and DCLRE1B.


2021 ◽  
Vol 22 (21) ◽  
pp. 11502
Author(s):  
Maria T. Löblein ◽  
Isabel Falke ◽  
Hans Theodor Eich ◽  
Burkhard Greve ◽  
Martin Götte ◽  
...  

In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.


2018 ◽  
Author(s):  
Sun-Mi Yoo ◽  
Cheol-Jung Lee ◽  
Seung-Min Kim ◽  
Seon-Yeon Cho ◽  
Juhee Park ◽  
...  

2017 ◽  
Vol 13 (6) ◽  
pp. 1131-1141 ◽  
Author(s):  
Daniele Vergara ◽  
Stefania De Domenico ◽  
Andrea Tinelli ◽  
Eleonora Stanca ◽  
Loretta L. Del Mercato ◽  
...  

We describe the molecular mechanisms of the action of novel trans-restricted analogues of resveratrol with enhanced anti-cancer properties.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Xi Zhang ◽  
Guoqing Hou ◽  
Andong Liu ◽  
Hui Xu ◽  
Yang Guan ◽  
...  

Abstract Ovarian cancer remains the most lethal gynecologic malignancy with late detection and acquired chemoresistance. Advanced understanding of the pathophysiology and novel treatment strategies are urgently required. A growing body of proteomic investigations suggest that phosphorylation has a pivotal role in the regulation of ovarian cancer associated signaling pathways. Matrine has been extensively studied for its potent anti-tumor activities. However, its effect on ovarian cancer cells and underlying molecular mechanisms remain unclear. Herein we showed that matrine treatment inhibited the development and progression of ovarian cancer cells by regulating proliferation, apoptosis, autophagy, invasion and angiogenesis. Matrine treatment retarded the cancer associated signaling transduction by decreasing the phosphorylation levels of ERK1/2, MEK1/2, PI3K, Akt, mTOR, FAK, RhoA, VEGFR2, and Tie2 in vitro and in vivo. Moreover, matrine showed excellent antitumor effect on chemoresistant ovarian cancer cells. No obvious toxic side effects were observed in matrine-administrated mice. As the natural agent, matrine has the potential to be the targeting drug against ovarian cancer cells with the advantages of overcoming the chemotherapy resistance and decreasing the toxic side effects.


2016 ◽  
Vol 23 (11) ◽  
pp. T155-T168 ◽  
Author(s):  
C Ricciardelli ◽  
N A Lokman ◽  
M P Ween ◽  
M K Oehler

Ovarian cancer has a distinct tendency for metastasising via shedding of cancerous cells into the peritoneal cavity and implanting onto the peritoneum that lines the pelvic organs. Once ovarian cancer cells adhere to the peritoneal cells, they migrate through the peritoneal layer and invade the local organs. Alterations in the extracellular environment are critical for tumour initiation, progression and intra-peritoneal dissemination. To increase our understanding of the molecular mechanisms involved in ovarian cancer metastasis and to identify novel therapeutic targets, we recently studied the interaction of ovarian cancer and peritoneal cells using a proteomic approach. We identified several extracellular matrix (ECM) proteins including, fibronectin, TGFBI, periostin, annexin A2 and PAI-1 that were processed as a result of the ovarian cancer–peritoneal cell interaction. This review focuses on the functional role of these proteins in ovarian cancer metastasis. Our findings together with published literature support the notion that ECM processing via the plasminogen–plasmin pathway promotes the colonisation and attachment of ovarian cancer cells to the peritoneum and actively contributes to the early steps of ovarian cancer metastasis.


2008 ◽  
Vol 389 (11) ◽  
Author(s):  
Hellinida Thomadaki ◽  
Andreas Scorilas

Abstract We assessed changes in the apoptosis-related genes BCL2, BAX, BCL2L12, FAS and CASPASE-3 in OVCAR-3 human ovarian cancer cells and BT-20 human breast cancer cells to provide an insight into the molecular mechanisms involved in the response of these cells to treatment with anticancer drugs and to assess their value as potential biomarkers of chemotherapy response in breast and ovarian cancer. Cells were treated with different chemotherapeutic drugs (cisplatin, carboplatin, doxorubicin, etoposide and taxol) and assessed for changes in the expression of apoptosis-related genes at the mRNA level. Total RNA was extracted, reverse-transcribed into cDNA and amplified by PCR using gene-specific primers. GAPDH was used as a housekeeping gene. Cytotoxicity was assessed by MTT assay. Both cancer cell lines responded differentially at the molecular level to the drug treatments. OVCAR-3 cells showed more pronounced sensitivity and changes compared to BT-20 cells at the mRNA level for different apoptosis-related genes, leading to cell and cancer type dependence in conjunction with drug dependence.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Nanumi Han ◽  
Delnur Anwar ◽  
Naoki Hama ◽  
Takuto Kobayashi ◽  
Hidefumi Suzuki ◽  
...  

Abstract Background Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth. Also, we reported poor prognosis in patients with IL-34-expressing tumor. Therefore, blocking of IL-34 is considered as a promising therapeutic strategy to suppress tumor progression. However, the molecular mechanisms that control IL-34 production are still largely unknown. Methods IL-34 producing ovarian cancer cell line HM-1 was treated by bromodomain and extra terminal inhibitor JQ1. The mRNA and protein expression of IL-34 was evaluated after JQ1 treatment. Chromatin immunoprecipitation was performed to confirm the involvement of bromodomain-containing protein 4 (Brd4) in the regulation of the Il34 gene. Anti-tumor effect of JQ1 was evaluated in mouse tumor model. Results We identified Brd4 as one of the critical molecules that regulate Il34 expression in cancer cells. Consistent with this, we found that JQ1 is capable of efficiently suppressing the recruitment of Brd4 to the promotor region of Il34 gene. Additionally, JQ1 treatment of mice bearing IL-34-producing tumor inhibited the tumor growth along with decreasing Il34 expression in the tumor. Conclusion The results unveiled for the first time the responsible molecule Brd4 that regulates Il34 expression in cancer cells and suggested its possibility as a treatment target.


Sign in / Sign up

Export Citation Format

Share Document