scholarly journals Vitamin D Enhances Radiosensitivity of Colorectal Cancer by Reversing Epithelial-Mesenchymal Transition

Author(s):  
Xinyue Yu ◽  
Qian Wang ◽  
Baocai Liu ◽  
Ning Zhang ◽  
Guanghui Cheng

Colorectal cancer (CRC) is often resistant to conventional therapies. Previous studies have reported the anticancer effects of vitamin D in several cancers, its role in radiotherapy (RT) remains unknown. We found that 1α, 25-dihydroxyvitamin D3 (VD3), the biologically active form of vitamin D, had antitumor effect on CRC and sensitized CRC cells to ionizing radiation (IR). VD3 demonstrated synergistic effect in combination with IR, which were detected by colony formation and cell proliferation assay. Radiosensitivity restoration induced by VD3 was associated with a series of phenotypes, including apoptosis, autophagy, and epithelial-mesenchymal transition (EMT). Using proteomics, “regulation of cell migration” and “cadherin” were found to be obviously enriched GO terms. Moreover, cystatin D and plasminogen activator inhibitor-1 (PAI-1), the differentially expressed proteins, were associated with EMT. Next, we confirmed the contributions of these two genes in enhancing IR sensitivity of CRC cells upon inhibition of EMT. As determined by proteomics, the mechanism underlying such sensitivity involved partially block of JAK/STAT3 signaling pathway. Furthermore, VD3 also elicited sensitization to RT in xenograft CRC models without additional toxicity. Our study revealed that VD3 was able to act in synergy with IR both in vitro and in vivo and could also confer radiosensitivity by regulating EMT, thereby providing a novel insight for elevating the efficacy of therapeutic regimens.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


2020 ◽  
Vol 21 (2) ◽  
pp. 642
Author(s):  
Magdalena Milczarek ◽  
Michał Chodyński ◽  
Anita Pietraszek ◽  
Martyna Stachowicz-Suhs ◽  
Kaori Yasuda ◽  
...  

Experimental data indicate that low-calcemic vitamin D derivatives (VDDs) exhibit anticancer properties, both in vitro and in vivo. In our search for a vitamin D analog as potential anticancer agent, we investigated the influence of chirality in the side chain of the derivatives of 1,25-dihydroxyergocalciferol (1,25D2) on their activities. In this study, we synthesized modified analogs at the side chain and the A-ring, which differed from one another in their absolute configuration at C-24, namely (24S)- and (24R)-1,25-dihydroxy-19-nor-20a-homo-ergocalciferols (PRI-5105 and PRI-5106, respectively), and evaluated their activity. Unexpectedly, despite introducing double-point modifications, both analogs served as very good substrates for the vitamin D-hydroxylating enzyme. Irrespective of their absolute C-24 configuration, PRI-5105 and PRI-5106 showed relatively low resistance to CYP24A1-dependent metabolic deactivation. Additionally, both VDDs revealed a similar antiproliferative activity against HT-29 colorectal cancer cells which was higher than that of 1,25D3, the major biologically active metabolite of vitamin D. Furthermore, PRI-5105 and PRI-5106 significantly enhanced the cell growth-inhibitory activity of 5-fluorouracil on HT-29 cell line. In conclusion, although the two derivatives showed a relatively high anticancer potential, they exhibited undesired high metabolic conversion.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


2019 ◽  
Vol 122 (4) ◽  
pp. 578-589
Author(s):  
Liang Wu ◽  
Zili Zhou ◽  
Shengbo Han ◽  
Jinhuang Chen ◽  
Zhengyi Liu ◽  
...  

Abstract Background We previously demonstrated that the pleomorphic adenoma gene like-2 (PLAGL2) is involved in the pathogenesis of Hirschsprung disease. Enhanced PLAGL2 expression was observed in several malignant tumours. However, the exact function of PLAGL2 and its underlying mechanism in colorectal cancer (CRC) remain largely unknown. Methods Immunohistochemical analysis of PLAGL2 was performed. A series of in vitro and in vivo experiments were conducted to reveal the role of PLAGL2 in the progression of CRC. Results Enhanced PLAGL2 expression was significantly associated with EMT-related proteins in CRC. The data revealed that PLAGL2 promotes CRC cell proliferation, migration, invasion and EMT both in vitro and in vivo. Mechanistically, PLAGL2 promoted the expression of ZEB1. PLAGL2 enhanced the expression and nuclear translocation of β-catenin by decreasing its phosphorylation. The depletion of β-catenin neutralised the regulation of ZEB1 that was caused by enhanced PLAGL2 expression. The small-molecule inhibitor PNU-74654, also impaired the enhancement of ZEB1 that resulted from the modified PLAGL2 expression. The depletion of ZEB1 could block the biological function of PLAGL2 in CRC cells. Conclusions Collectively, our findings suggest that PLAGL2 mediates EMT to promote colorectal cancer metastasis via β-catenin-dependent regulation of ZEB1.


2021 ◽  
Author(s):  
Justine Vanhevel ◽  
Lieve Verlinden ◽  
Stefanie Doms ◽  
Hans Wildiers ◽  
Annemieke Verstuyf

The active form of vitamin D3, 1,25-dihydroxvitamin D3 [1,25(OH)2D3], is primarily known as a key regulator of calcium and phosphate homeostasis. It exerts its biological functions by binding to the vitamin D receptor (VDR), a transcription factor that regulates gene expression in vitamin D-target tissues such as intestine, kidney and bone. Yet, the VDR is expressed in many additional normal and cancerous tissues, where it moderates the antiproliferative, prodifferentiating and immune-modulating effects of 1,25(OH)2D3. Interestingly, several epidemiological studies show that low levels of 25(OH)D3, a biological marker for 1,25(OH)2D3 status, are associated with increased risk of breast cancer (BC) development. Mendelian randomization studies, however, did not find any relationship between single-nucleotide polymorphisms in genes associated with lower serum 25(OH)D3 and BC risk. Nevertheless, multiple in vitro and in vivo preclinical studies illustrate that 1,25(OH)2D3 or its less calcaemic structural analogues influence diverse cellular processes in BC such as proliferation, differentiation, apoptosis, autophagy and the epithelial-mesenchymal transition. Recent insights also demonstrate that 1,25(OH)2D3 treatment impacts on cell metabolism and on the cancer stem cell population. The presence of VDR in the majority of BCs, together with the various antitumoural effects of 1,25(OH)2D3, have supported the evaluation of the effects of vitamin D3 supplementation on BC development. However, most randomized controlled clinical trials do not demonstrate a clear decrease of BC incidence with vitamin D3 supplementation. However, 1,25(OH)2D3 or its analogues seem biologically more active, and may have more potential anticancer activity in BC upon combination with existing cancer therapies.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.


2018 ◽  
Vol 46 (2) ◽  
pp. 860-872 ◽  
Author(s):  
Zhengwei Leng ◽  
Qinghua Xia ◽  
Jinhuang Chen ◽  
Yong Li ◽  
Jiqian Xu ◽  
...  

Background/Aims: Although EpCAM+CD44+ cells exhibit more stem-like properties than did EpCAM-CD44- cells, the specificity of EpCAM combined with CD44 in defining CSCs needs further improvement. Lgr5 is used as a biomarker to isolate cancer stem cells (CSCs) in colorectal cancer. However, it remains unclear whether Lgr5, along with EpCAM and CD44, can further identify and define CSCs in colorectal cancer. Methods: Lgr5+CD44+EpCAM+, Lgr5+CD44+EpCAM-, Lgr5+CD44-EpCAM+, Lgr5-CD44+EpCAM+, and Lgr5-CD44-EpCAM-cells were separately isolated using fluorescence-activated cell sorting (FACS). Colony formation, self-renewal, differentiation, and tumorigenic properties of these cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression of stemness genes and CSC- and epithelial-mesenchymal transition (EMT)-related genes, such as KLF4, Oct4, Sox2, Nanog, CD133, CD44, CD166, ALDH1, Lgr5, E-cadherin, ZO-1, Vimentin, Snail, Slug, and Twist, was examined using real-time PCR. Results: Lgr5-positive subpopulations exhibited higher capacities for colony formation, self-renewal, differentiation, and tumorigenicity as well as higher expression of stemness genes and mesenchymal genes and lower expression of epithelial genes than did Lgr5-negative subpopulations. Conclusion: Our data revealed that tumorigenic cells were highly restricted to Lgr5-positive subpopulations. Most importantly, Lgr5+CD44+EpCAM+ cells exhibited more pronounced CSC-like traits than did any other subpopulation, indicating that Lgr5 combined with CD44 and EpCAM can further improve the stem-like traits of CSCs in colorectal cancer.


2020 ◽  
Vol 124 (1) ◽  
pp. 270-280
Author(s):  
Junhui Yu ◽  
Shan Li ◽  
Zhengshui Xu ◽  
Jing Guo ◽  
Xiaopeng Li ◽  
...  

Abstract Background Emerging evidence suggests the involvement of caudal-related homoeobox transcription factor 2 (CDX2) in tumorigenesis of various cancers. Although CDX2 functions in cancer invasion and metastasis, fewer studies focus on the role of CDX2 during the induction of epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC). Methods Immunohistochemical analysis of CDX2 was performed. A series of in vitro and in vivo experiments were conducted to reveal the role of CDX2 in the invasion and metastasis of CRC. Results CDX2 was downregulated in CRC tissues and reduced CDX2 correlated with poor prognosis. Knockdown of CDX2 promoted colon cancer cell invasion in vitro and facilitated liver metastasis in vivo with inducing EMT phenotypes. Further investigation indicated that CDX2 retarded Akt and GSK-3β phosphorylation, and thereby diminished Snail expression, β-catenin stabilisation and nuclear translocation. The depletion of β-catenin neutralised the regulation of Slug and ZEB1 by CDX2 knockdown. Mechanistically, CDX2 antagonised PI3K/Akt activity in CRC by modulating PTEN expression. CDX2 directly bound to the promoter of PTEN and transactivated its expression. Conclusions Our study first uncovered that CDX2 inhibits EMT and metastasis of CRC by regulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression.


Sign in / Sign up

Export Citation Format

Share Document