scholarly journals Regulation of miRNAs Expression by Mutant p53 Gain of Function in Cancer

Author(s):  
Tzitzijanik Madrigal ◽  
Jesús Hernández-Monge ◽  
Luis A Herrera ◽  
Claudia Haydée González-De la Rosa ◽  
Guadalupe Domínguez-Gómez ◽  
...  

The p53 roles have been largely described; among them, cell proliferation and apoptosis control are some of the best studied and understood. Interestingly, the mutations on the six hotspot sites within the region that encodes the DNA-binding domain of p53 give rise to other very different variants. The particular behavior of these variants led to consider p53 mutants as separate oncogene entities; that is, they do not retain wild type functions but acquire new ones, namely Gain-of-function p53 mutants. Furthermore, recent studies have revealed how p53 mutants regulate gene expression and exert oncogenic effects by unbalancing specific microRNAs (miRNAs) levels that provoke epithelial-mesenchymal transition, chemoresistance, and cell survival, among others. In this review, we discuss recent evidence of the crosstalk between miRNAs and mutants of p53, as well as the consequent cellular processes dysregulated.

Oncogene ◽  
2012 ◽  
Vol 32 (27) ◽  
pp. 3286-3295 ◽  
Author(s):  
P Dong ◽  
M Karaayvaz ◽  
N Jia ◽  
M Kaneuchi ◽  
J Hamada ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382198981
Author(s):  
Xin-bo Sun ◽  
Yong-wei Chen ◽  
Qi-sheng Yao ◽  
Xu-hua Chen ◽  
Min He ◽  
...  

Background: Prostate cancer is a common malignant tumor with a high incidence. MicroRNAs (miRNAs) have been shown to be important post-transcriptional regulators during tumorigenesis. This study aimed to explore the effect of miR-144 on PCa proliferation and apoptosis. Material and Methods: The expression of miR-144 and EZH2 were examined in clinical PCa tissues. PCa cell line LNCAP and DU-145 was employed and transfected with miR-144 mimics or inhibitors. The correlation between miR-144 and EZH2 was verified by luciferase reporter assay. Cell viability, apoptosis and migratory capacity were detected by CCK-8, flow cytometry assay and wound healing assay. The protein level of EZH2, E-Cadherin, N-Cadherin and vimentin were analyzed by western blotting. Results: miR-144 was found to be negatively correlated to the expression of EZH2 in PCa tissues. Further studies identified EZH2 as a direct target of miR-144. Moreover, overexpression of miR-144 downregulated expression of EZH2, reduced cell viability and promoted cell apoptosis, while knockdown of miR-144 led to an inverse result. miR-144 also suppressed epithelial-mesenchymal transition level of PCa cells. Conclusion: Our study indicated that miR-144 negatively regulate the expression of EZH2 in clinical specimens and in vitro. miR-144 can inhibit cell proliferation and induce cell apoptosis in PCa cells. Therefore, miR-144 has the potential to be used as a biomarker for predicting the progression of PCa.


2018 ◽  
Vol 39 (4) ◽  
Author(s):  
Leixiang Yang ◽  
Tanjing Song ◽  
Qian Cheng ◽  
Lihong Chen ◽  
Jiandong Chen

ABSTRACT Missense p53 mutants often accumulate in tumors and drive progression through gain of function. MDM2 efficiently degrades wild-type p53 but fails to degrade mutant p53 in tumor cells. Previous studies revealed that mutant p53 inhibits MDM2 autoubiquitination, suggesting that the interaction inhibits MDM2 E3 activity. Recent work showed that MDM2 E3 activity is stimulated by intramolecular interaction between the RING and acidic domains. Here, we show that in the mutant p53-MDM2 complex, the mutant p53 core domain binds to the MDM2 acidic domain with significantly higher avidity than wild-type p53. The mutant p53-MDM2 complex is deficient in catalyzing ubiquitin release from the activated E2 conjugating enzyme. An MDM2 construct with extra copies of the acidic domain is resistant to inhibition by mutant p53 and efficiently promotes mutant p53 ubiquitination and degradation. The results suggest that mutant p53 interferes with the intramolecular autoactivation mechanism of MDM2, contributing to reduced ubiquitination and increased accumulation in tumor cells.


2016 ◽  
Vol 38 (2) ◽  
pp. 427-448 ◽  
Author(s):  
Yanping Gao ◽  
Bing Feng ◽  
Siqi Han ◽  
Kai Zhang ◽  
Jing Chen ◽  
...  

Cancer remains one of the most threatening causes of human health impairment, and the mechanisms underlying tumorigenesis have not been completely characterized. MicroRNAs (miRNAs) are a group of endogenous, small (18∼25 nucleotides) non-coding RNAs which negatively regulate gene expressions by directly binding to the 3'-untranslated regions (3'-UTRs) of the target messenger RNAs (mRNAs). Increasing evidence has demonstrated abnormal miRNA profiles and confirmed their involvement in tumor initiation and progression. As one important member of the miR-200 family, microRNA (miR)-141 is aberrantly expressed in many human malignant tumors, participating in various cellular processes including epithelial-mesenchymal transition (EMT), proliferation, migration, invasion, and drug resistance. In the present review, we briefly describe the mechanisms underlying miR-141-mediated tumorigenesis and the possible future of miR-141 as a potential diagnostic and prognostic parameter as well as therapeutic target in clinical applications.


2011 ◽  
Vol 286 (18) ◽  
pp. 16218-16228 ◽  
Author(s):  
Yanhong Zhang ◽  
Wensheng Yan ◽  
Xinbin Chen

Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.


2020 ◽  
Vol 1864 (1) ◽  
pp. 129440 ◽  
Author(s):  
Ana Sara Gomes ◽  
Helena Ramos ◽  
Sara Gomes ◽  
Joana B. Loureiro ◽  
Joana Soares ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3133 ◽  
Author(s):  
Margarida D. Amaral ◽  
Margarida C. Quaresma ◽  
Ines Pankonien

One of the key features associated with the substantial increase in life expectancy for individuals with CF is an elevated predisposition to cancer, firmly established by recent studies involving large cohorts. With the recent advances in cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and the increased long-term survival rate of individuals with cystic fibrosis (CF), this is a novel challenge emerging at the forefront of this disease. However, the mechanisms linking dysfunctional CFTR to carcinogenesis have yet to be unravelled. Clues to this challenging open question emerge from key findings in an increasing number of studies showing that CFTR plays a role in fundamental cellular processes such as foetal development, epithelial differentiation/polarization, and regeneration, as well as in epithelial–mesenchymal transition (EMT). Here, we provide state-of-the-art descriptions on the moonlight roles of CFTR in these processes, highlighting how they can contribute to novel therapeutic strategies. However, such roles are still largely unknown, so we need rapid progress in the elucidation of the underlying mechanisms to find the answers and thus tailor the most appropriate therapeutic approaches.


2016 ◽  
Vol 36 (21) ◽  
pp. 2742-2754 ◽  
Author(s):  
Xiaomin Zhong ◽  
Lan Zheng ◽  
Jianfeng Shen ◽  
Dongmei Zhang ◽  
Minmin Xiong ◽  
...  

Oncogenic KRAS contributes to malignant transformation, antiapoptosis, and metastasis in multiple human cancers, such as lung, colon, and pancreatic cancers and melanoma. MicroRNAs (miRNAs) are endogenous 18- to 25-nucleotide noncoding small RNAs that regulate gene expression in a sequence-specific manner via the degradation of target mRNAs or inhibition of protein translation. In the present study, using array-based miRNA profiling in IMR90 and MCF10A cells expressing oncogenic KRAS, we identified that the expression of the microRNA 200 (mir-200) family was suppressed by KRAS activation and that this suppression was mediated by the transcription factors JUN and SP1 in addition to ZEB1. Restoration of mir-200 expression compromised KRAS-induced cellular transformationin vitroand tumor formationin vivo. In addition, we found that enforced expression of mir-200 abrogated KRAS-induced resistance to apoptosis by directly targeting the antiapoptotic geneBCL2. Finally, mir-200 was able to antagonize the epithelial-mesenchymal transition (EMT) driven by mutant KRAS. Collectively, our results suggest that repression of endogenous mir-200 expression is one of the important cellular responses to KRAS activation during tumor initiation and progression.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yongli Li ◽  
Tingting Wang ◽  
Yanjie Sun ◽  
Tengfei Huang ◽  
Cuiping Li ◽  
...  

Epithelial-mesenchymal transition (EMT) involves metastasis and drug resistance; thus, a new EMT reversing agent is required. It has shown that wild-type p53 can reverse EMT back to epithelial characteristics, and iron chelator acting as a p53 inducer has been demonstrated. Moreover, recent study revealed that etoposide could also inhibit EMT. Therefore, combination of etoposide with iron chelator might achieve better inhibition of EMT. To this end, we prepared di-2-pyridineketone hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxDpt) that combined the podophyllotoxin (Ptox) structural unit (etoposide) with the dithiocarbamate unit (iron chelator) through the hybridization strategy. The resulting PtoxDpt inherited characteristics from parent structural units, acting as both the p53 inducer and topoisomerase II inhibitor. In addition, the PtoxDpt exhibited significant inhibition in migration and invasion, which correlated with downregulation of matrix metalloproteinase (MMP). More importantly, PtoxDpt could inhibit EMT in the absence or presence of TGF-β1, concomitant to the ROS production, and the additional evidence revealed that PtoxDpt downregulated AKT/mTOR through upregulation of p53, indicating that PtoxDpt induced EMT inhibition through the p53/PI3K/AKT/mTOR pathway.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaw8500
Author(s):  
Hong-Mei Li ◽  
Yan-Ran Bi ◽  
Yang Li ◽  
Rong Fu ◽  
Wen-Cong Lv ◽  
...  

The zinc finger transcription factor Snail is aberrantly activated in many human cancers and associated with poor prognosis. Therefore, targeting Snail is expected to exert therapeutic benefit in patients with cancer. However, Snail has traditionally been considered “undruggable,” and no effective pharmacological inhibitors have been identified. Here, we found a small-molecule compound CYD19 that forms a high-affinity interaction with the evolutionarily conserved arginine-174 pocket of Snail protein. In aggressive cancer cells, CYD19 binds to Snail and thus disrupts Snail’s interaction with CREB-binding protein (CBP)/p300, which consequently impairs CBP/p300-mediated Snail acetylation and then promotes its degradation through the ubiquitin-proteasome pathway. Moreover, CYD19 restores Snail-dependent repression of wild-type p53, thus reducing tumor growth and survival in vitro and in vivo. In addition, CYD19 reverses Snail-mediated epithelial-mesenchymal transition (EMT) and impairs EMT-associated tumor invasion and metastasis. Our findings demonstrate that pharmacologically targeting Snail by CYD19 may exert potent therapeutic effects in patients with cancer.


Sign in / Sign up

Export Citation Format

Share Document