scholarly journals Pro-regenerative Dialogue Between Macrophages and Mesenchymal Stem/Stromal Cells in Osteoarthritis

Author(s):  
Candice Bohaud ◽  
Rafael Contreras-Lopez ◽  
Jholy De La Cruz ◽  
Claudia Terraza-Aguirre ◽  
Mingxing Wei ◽  
...  

Osteoarthritis (OA), the most common degenerative and inflammatory joint disorder, is multifaceted. Indeed, OA characteristics include cartilage degradation, osteophytes formation, subchondral bone changes, and synovium inflammation. The difficulty in discovering new efficient treatments for OA patients up to now comes from the adoption of monotherapy approaches targeting either joint tissue repair/catabolism or inflammation to address the diverse components of OA. When satisfactory, these approaches only provide short-term beneficial effects, since they only result in the repair and not the full structural and functional reconstitution of the damaged tissues. In the present review, we will briefly discuss the current therapeutic approaches used to repair the damaged OA cartilage. We will highlight the results obtained with cell-based products in clinical trials and demonstrate how the current strategies result in articular cartilage repair showing restricted early-stage clinical improvements. In order to identify novel therapeutic targets and provide to OA patients long-term clinical benefits, herein, we will review the basis of the regenerative process. We will focus on macrophages and their ambivalent roles in OA development and tissue regeneration, and review the therapeutic strategies to target the macrophage response and favor regeneration in OA.

Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 589
Author(s):  
Ling Rong Wong ◽  
Peiyan Wong ◽  
Paul Chi-Lui Ho

Accumulating evidence suggests that disruptions in brain energy metabolism may be a key player in the pathogenesis of Alzheimer’s disease (AD). Pioglitazone (PIO) has been found to exert beneficial effects on metabolic dysfunction in many AD preclinical studies. However, limited success in clinical trials remains an obstacle to its development for the treatment of AD. PIO’s poor brain penetration was often cited as a contributing factor to the lack of clinical benefit. In this study, we prepared PIO-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles and administered them as suspended nanoparticles via nebulization. Preliminary investigation of drug distribution to the brain revealed comparatively reduced systemic exposure after administering PIO nanoparticles via the intranasal route. In vitro, extracellular flux analysis showed significantly raised spare respiratory capacity when cells were treated with low-dose PIO nanoparticles. Tg2576 transgenic mice treated with low-dose PIO nanoparticles over four months exhibited an overall trend of reduced hyperactivity in open field tests but did not show any visible effect on alternation rates in the Y-maze task. Subsequent 1H NMR-based metabolic profiling of their plasma and different brain regions revealed differences in metabolic profiles in the cerebellum, cortex, and hippocampus of Tg2576 mice after long-term PIO treatment, but not in their midbrain and plasma. In particular, the specificity of PIO’s treatment effects on perturbed amino acid metabolism was observed in the cortex of transgenic mice with increases in alanine and N-acetylaspartate levels, supporting the notion that PIO treatment exerts beneficial effects on impaired energy metabolism associated with AD. In conclusion, inhalation exposure to PIO nanoparticles presents an exciting opportunity that this drug could be administered intranasally at a much lower dose while achieving a sufficient level in the brain to elicit metabolic benefits at an early stage of AD but with reduced systemic exposure.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Syuichi Tetsuka ◽  
Ken-ichi Fujimoto ◽  
Kunihiko Ikeguchi

Previous studies addressing preoperative steroid treatment have revealed that control of myasthenia gravis (MG) with steroids prior to surgery appeared to stabilize postoperative status. The purpose of our study was to clarify the clinical benefits of the preoperative programmed high-dose steroid treatment on the long-term outcomes of MG patients. We retrospectively reviewed the records of 171 MG patients who were followed up after undergoing thymectomy in our hospital between 1988 and 2006. One hundred and thirteen patients in the programmed treatment group had received preoperative steroid treatment, while 58 patients received no steroid treatment during the preoperative period. Clinical remission, which was defined as the achievement of the modified pharmacologic remission (PR) for at least 1 year, and clinical benefits were compared between the two groups. With regard to the remission after thymectomy, Kaplan-Meier life-table curves for patients in the preoperative steroid treatment group versus those for patients in the no steroid preoperative treatment group revealed a significantly higher probability of the PR in the preoperative steroid treatment group (log-rank test, P<0.01). This study might be the first, as per our knowledge, to indicate that preoperative programmed high-dose steroid treatment has long-term beneficial effects for MG patients.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 94-LB
Author(s):  
SERGIO VENCIO ◽  
JUAN MANOSALVA ◽  
CHANTAL MATHIEU ◽  
PIETER PROOT ◽  
PAIVI M. PALDANIUS

2020 ◽  
Vol 6 (1) ◽  
pp. 49-54
Author(s):  
Khabib Barnoev ◽  

The article presents the results of a study to assess the functional reserve of the kidneys against the background of a comparative study of antiaggregant therapy dipyridamole and allthrombosepin in 50 patients with a relatively early stage of chronic kidney disease. Studies have shown that long-term administration of allthrombosepin to patients has resulted in better maintenance of kidney functional reserves. Therefore, our research has once again confirmed that diphtheridamol, which is widely used as an antiaggregant drug in chronic kidney disease, does not lag behind the domestic raw material allthrombosepin


2021 ◽  
Vol 13 (11) ◽  
pp. 2131
Author(s):  
Jamon Van Den Hoek ◽  
Alexander C. Smith ◽  
Kaspar Hurni ◽  
Sumeet Saksena ◽  
Jefferson Fox

Accurate remote sensing of mountainous forest cover change is important for myriad social and ecological reasons, but is challenged by topographic and illumination conditions that can affect detection of forests. Several topographic illumination correction (TIC) approaches have been developed to mitigate these effects, but existing research has focused mostly on whether TIC improves forest cover classification accuracy and has usually found only marginal gains. However, the beneficial effects of TIC may go well beyond accuracy since TIC promises to improve detection of low illuminated forest cover and thereby normalize measurements of the amount, geographic distribution, and rate of forest cover change regardless of illumination. To assess the effects of TIC on the extent and geographic distribution of forest cover change, in addition to classification accuracy, we mapped forest cover across mountainous Nepal using a 25-year (1992–2016) gap-filled Landsat time series in two ways—with and without TIC (i.e., nonTIC)—and classified annual forest cover using a Random Forest classifier. We found that TIC modestly increased classifier accuracy and produced more conservative estimates of net forest cover change across Nepal (−5.2% from 1992–2016) TIC. TIC also resulted in a more even distribution of forest cover gain across Nepal with 3–5% more net gain and 4–6% more regenerated forest in the least illuminated regions. These results show that TIC helped to normalize forest cover change across varying illumination conditions with particular benefits for detecting mountainous forest cover gain. We encourage the use of TIC for satellite remote sensing detection of long-term mountainous forest cover change.


Author(s):  
Wijitbusaba Marome ◽  
Rajib Shaw

Thailand has been affected by COVID-19, like other countries in the Asian region at an early stage, and the first case was reported as early as mid-January 2020. Thailand’s response to the COVID-19 pandemic has been guided by the “Integrated Plan for Multilateral Cooperation for Safety and Mitigation of COVID-19”. This paper analyses the health resources in the country and focuses on the response through community-level public health system and legislative measures. The paper draws some lessons on future preparedness, especially with respect to the four priorities of Sendai Framework for Disaster Risk Reduction. At the end, the paper puts some key learning for future preparedness. While Thailand’s response to COVID-19 has been effective in limiting the spread of the disease, it falls short at being able to address the multiple dimensions of the crisis such as the economic and social impacts. The socioeconomic sectors have been hardest hit, with significant impact on tourism sectors. Sociopolitical system also plays an important role in governance and decision-making for pandemic responses. The analysis suggests that one opportunity for enhancing resilience in Thailand is to strive for more multilevel governance that engages with various stakeholders and to support grassroots and community-level networks. The COVID-19 pandemic recovery is a chance to recover better while leaving no one behind. An inclusive long-term recovery plan for the various impacted countries needs to take a holistic approach to address existing gaps and work towards a sustainable society. Furthering the Health Emergency Disaster Risk Management (HEDRM) Framework may support a coordinated response across various linked sectors rather than straining one particular sector.


Sign in / Sign up

Export Citation Format

Share Document