scholarly journals The Emerging Role of Exosomes in Cancer Chemoresistance

Author(s):  
Jing Li ◽  
Na Gao ◽  
Zhengfan Gao ◽  
Wei Liu ◽  
Bairen Pang ◽  
...  

Chemoresistance is an impending challenge in cancer treatment. In recent years, exosomes, a subtype of extracellular vesicles with a diameter of 40–150 nm in bloodstream and other bio-fluids, have attracted increasing interest. Exosomes contain proteins, nucleic acids, and lipids, which act as important signaling molecules. Many reports indicate that exosomes play critical roles in chemoresistance through intercellular interactions, including drug removal from cells, transfer of drug resistance phenotypes to other cancer cells, and the increase in plastic stem cell subsets. Exosomes can reflect the physiological and pathological state of parent cells. Owing to their elevated stability, specificity, and sensitivity, exosomes are served as biomarkers in liquid biopsies to monitor cancer chemoresistance, progression, and recurrence. This review summarizes the exosome-mediated mechanisms of cancer chemoresistance, as well as its role in reversing and monitoring chemoresistance. The scientific and technological challenges and future applications of exosomes are also explored.

Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 240 ◽  
Author(s):  
Phung Huong ◽  
Lap Nguyen ◽  
Xuan-Bac Nguyen ◽  
Sang Lee ◽  
Duc-Hiep Bach

Besides the critical functions in hemostasis, thrombosis and the wounding process, platelets have been increasingly identified as active players in various processes in tumorigenesis, including angiogenesis and metastasis. Once activated, platelets can release bioactive contents such as lipids, microRNAs, and growth factors into the bloodstream, subsequently enhancing the platelet–cancer interaction and stimulating cancer metastasis and angiogenesis. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated to be associated with platelets. Therefore, understanding how platelets contribute to the tumor microenvironment may potentially identify strategies to suppress cancer angiogenesis, metastasis, and drug resistance. Herein, we present a review of recent investigations on the role of platelets in the tumor-microenvironment including angiogenesis, and metastasis, as well as targeting platelets for cancer treatment, especially in drug resistance.


2020 ◽  
Vol 40 (10) ◽  
pp. 5611-5620 ◽  
Author(s):  
GYEONGYUN GO ◽  
CHUL WON YUN ◽  
YEO MIN YOON ◽  
JI HO LIM ◽  
JUN HEE LEE ◽  
...  

2018 ◽  
Vol 49 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Lan Hong ◽  
Wangsheng  Chen ◽  
Aiwen Xing ◽  
Dongcai Wu ◽  
Shengtan Wang

Background/Aims: Cancer stem-like cells are the main cause of tumor occurrence, progression, and therapeutic resistance. However, the precise signals required for the maintenance of the stem-like traits of these cells in ovarian cancer remain elusive. We have thus worked to elucidate the functional role of Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), a gene encoding the 14-3-3ζ protein, in the regulation of multidrug resistance and stem cell-like traits in ovarian cancer. Methods: We detected the YWHAZ levels in human ovarian cancer specimens and cell lines using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blots. MTS assays, soft agar colony formation assays, migration assays, cell cycle analysis, sphere formation assays, and flow cytometry were applied to investigate the functional role of YWHAZ in ovarian cancer. Results: Our data reveals substantially increased YWHAZ expression in both cisplatin- and paclitaxel-resistant ovarian cancer cells. Silencing YWHAZ restored the sensitivity of resistant ovarian cancer cells to cisplatin and paclitaxel. Furthermore, in vitro studies showed that down-regulation of YWHAZ inhibited cell cycle progression, migration, and the expression of stem cell markers. Moreover, tumorigenicity was suppressed in tumor-bearing BALB/c nude mice following YWHAZ knockdown. Additionally, we demonstrated that the expression of YWHAZ was directly down-regulated by miR-30e in resistant ovarian cancer cells. Conclusion: Our results have led to new insights into the essential role of YWHAZ in the regulation of tumourigenesis, stem-like traits, and drug resistance in ovarian cancer, thereby helping to identify a potential target for ovarian cancer therapy.


2018 ◽  
Vol 18 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Ning Ding ◽  
Hong Zhang ◽  
Shan Su ◽  
Yumei Ding ◽  
Xiaohui Yu ◽  
...  

Background: Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective: Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method: CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results: Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drugresistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion: This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1792
Author(s):  
Debashri Manna ◽  
Devanand Sarkar

Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.


2021 ◽  
Author(s):  
Sweta Ghosh ◽  
Subir Kumar Juin ◽  
Suchandra Bhattacharyya Majumdar ◽  
Subrata Majumdar

2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


2019 ◽  
Vol 9 (8) ◽  
pp. 882-894
Author(s):  
Jahnavi Rama Madhuri Kamaraju ◽  
Raghavendra Rao Kanchi ◽  
Rajesh Kumar Borra ◽  
Padma Suvarna Reniguntla ◽  
Satyanarayana Rentala

Nanophosphor compounds with both diagnostic and therapeutic functions are potential for cancer diagnosis and treatment. Lanthanide complexes play a crucial role in cancer diagnosis and therapy. Gadolinium-complexes are commonly used as magnetic resonance imaging (MRI) contrast agents for cancer imaging. The role of a lanthanide, Ytterbium (Yb) in cancer treatment is not unknown. The present work focuses on finding the role of Yb when doped into Gadolinium complexes in cancer treatment. Our results demonstrate that Yb doped Gadolinium molybdate coated with biocompatible silica, effectively inhibited the viability of breast cancer cells after 24 and 48 h of treatment in in vitro, and in contrast the nanophosphor compounds did not affect the viability of healthy cells. Yb doped Gadolinium molybdate also up-regulated apoptotic genes in breast cancer cells. Hence we propose that Yb doped Gadolinium molybdate is a promising theranostic compound. To the best of our knowledge, this is the first report showing anti-cancer nature of Ytterbium-doped into Gadolinium nanophosphors.


Oncogenesis ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. e291-e291 ◽  
Author(s):  
T Redmer ◽  
I Walz ◽  
B Klinger ◽  
S Khouja ◽  
Y Welte ◽  
...  

2012 ◽  
Author(s):  
Yu-Wei Leu ◽  
Mei-Yu Pai ◽  
Chia-Chen Hsu ◽  
Kuan-Der Lee ◽  
Chih-Cheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document