scholarly journals Identification and Validation of Pyroptosis-Related Gene Signature to Predict Prognosis and Reveal Immune Infiltration in Hepatocellular Carcinoma

Author(s):  
Xiao-Wei Fu ◽  
Chun-Qing Song

Background: Hepatocellular carcinoma (HCC) is characterized by a poor prognosis and accounts for the fourth common cause of cancer-related deaths. Recently, pyroptosis has been revealed to be involved in the progression of multiple cancers. However, the role of pyroptosis in the HCC prognosis remains elusive.Methods: The clinical information and RNA-seq data of the HCC patients were collected from the TCGA-LIHC datasets, and the differential pyroptosis-related genes (PRG) were firstly explored. The univariate Cox regression and consensus clustering were applied to recognize the HCC subtypes. The prognostic PRGs were then submitted to the LASSO regression analysis to build a prognostic model in the TCGA training cohort. We further evaluated the predictive model in the TCGA test cohort and ICGC validation cohort (LIRI-JP). The accuracy of prediction was validated using the Kaplan—Meier (K-M) and receiver operating characteristic (ROC) analyses. The single-sample gene set enrichment analysis (ssGSEA) was used to determine the differential immune cell infiltrations and related pathways. Finally, the expression of the prognostic genes was validated by qRT-PCR in vivo and in vitro.Results: We identified a total of 26 differential PRGs, among which three PRGs comprising GSDME, GPX4, and SCAF11 were subsequently chosen for constructing a prognostic model. This model significantly distinguished the HCC patients with different survival years in the TCGA training, test, and ICGC validation cohorts. The risk score of this model was confirmed as an independent prognostic factor. A nomogram was generated indicating the survival years for each HCC patient. The ssGSEA demonstrated several tumor-infiltrating immune cells to be remarkably associated with the risk scores. The qRT-PCR results also showed the apparent dysregulation of PRGs in HCC. Finally, the drug sensitivity was analyzed, indicating that Lenvatinib might impact the progression of HCC via targeting GSDME, which was also validated in human Huh7 cells.Conclusion: The PRG signature comprised of GSDME, GPX4, and SCAF11 can serve as an independent prognostic factor for HCC patients, which would provide further evidence for more clinical and functional studies.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10008
Author(s):  
Zhenyu Zhao ◽  
Boxue He ◽  
Qidong Cai ◽  
Pengfei Zhang ◽  
Xiong Peng ◽  
...  

Background The highest rate of cancer-related deaths worldwide is from lung adenocarcinoma (LUAD) annually. Metabolism was associated with tumorigenesis and cancer development. Metabolic-related genes may be important biomarkers and metabolic therapeutic targets for LUAD. Materials and Methods In this study, the gleaned cohort included LUAD RNA-SEQ data from the Cancer Genome Atlas (TCGA) and corresponding clinical data (n = 445). The training cohort was utilized to model construction, and data from the Gene Expression Omnibus (GEO, GSE30219 cohort, n = 83; GEO, GSE72094, n = 393) were regarded as a testing cohort and utilized for validation. First, we used a lasso-penalized Cox regression analysis to build a new metabolic-related signature for predicting the prognosis of LUAD patients. Next, we verified the metabolic gene model by survival analysis, C-index, receiver operating characteristic (ROC) analysis. Univariate and multivariate Cox regression analyses were utilized to verify the gene signature as an independent prognostic factor. Finally, we constructed a nomogram and performed gene set enrichment analysis to facilitate subsequent clinical applications and molecular mechanism analysis. Result Patients with higher risk scores showed significantly associated with poorer survival. We also verified the signature can work as an independent prognostic factor for LUAD survival. The nomogram showed better clinical application performance for LUAD patient prognostic prediction. Finally, KEGG and GO pathways enrichment analyses suggested several especially enriched pathways, which may be helpful for us investigative the underlying mechanisms.


2021 ◽  
Author(s):  
Chuan-Qi Xu ◽  
Kui-Sheng Yang ◽  
Shu-Xian Zhao ◽  
Jian Lv

Abstract Objective: Pancreatic cancer (PC) is one of the most malignant tumors. Cytosolic DNA sensing have been found to play an essential role in tumor. In this study, a cytosolic DNA sensing-related genes (CDSRGs) signature was constructed and the potential mechanisms also been discussed.Methods: The RNA expression and clinical data of PC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Subsequently, univariate (UCR) and multivariate Cox regression (MCR) analyses were conducted to establish a prognostic model in the TCGA patients, which was verified by GEO patients. Cancer immune infiltrates were investigated via single sample gene set enrichment analysis (ssGSEA) and Tumor Immune Estimation Resource (TIMER). Finally, Gene Set Enrichment Analysis (GSEA) was used to investigate the related signaling pathways.Results: A prognostic model comprising four genes (POLR2E,IL18, MAVS, and FADD) was established. The survival rate of patients in the low-risk group was significantly higher than that of patients in the high-risk group. In addition, CDSRGs-risk score was proved as an independent prognostic factor in PC. Immune infiltrates and drug sensitivity are associated with POLR2E,IL18, MAVS, and FADD expression.Conclusions: In summary, we present and validated a CDSRGs risk model that is an independent prognostic factor and indicates the immune characteristics of PC. This prognostic model may facilitate the personalized treatment and monitoring.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Lu ◽  
Shenglan Cai ◽  
Xiaozhen Peng ◽  
Ruochan Cheng ◽  
Yiya Zhang

The Na+/K+-ATPase (NKA), has been proposed as a signal transducer involving various pathobiological processes, including tumorigenesis. However, the clinical relevance of NKA in hepatocellular carcinoma (HCC) has not been well studied. This study revealed the upregulation of mRNA of ATP1A1, ATP1B1, and ATP1B3 in HCC using TCGA, ICGC, and GEO database. Subsequently, ATP1B3 was demonstrated as an independent prognostic factor of overall survival (OS) of HCC. To investigate the potential mechanisms of ATP1B3 in HCC, we analyzed the co-expression network using LinkedOmics and found that ATP1B3 co-expressed genes were associated with immune-related biological processes. Furthermore, we found that ATP1B3 was correlated immune cell infiltration and immune-related cytokines expression in HCC. The protein level of ATP1B3 was also validated as a prognostic significance and was correlated with immune infiltration in HCC using two proteomics datasets. Finally, functional analysis revealed that ATP1B3 was increased in HCC cells and tissues, silenced ATP1B3 repressed HCC cell proliferation, migration, and promoted HCC cell apoptosis and epithelial to mesenchymal transition (EMT). In conclusion, these findings proved that ATP1B3 could be an oncogene and it was demonstrated as an independent prognostic factor and correlated with immune infiltration in HCC, revealing new insights into the prognostic role and potential immune regulation of ATP1B3 in HCC progression and provide a novel possible therapeutic strategy for HCC.


2022 ◽  
Vol 2022 ◽  
pp. 1-24
Author(s):  
Bin-Bin Da ◽  
Shuai Luo ◽  
Ming Huang ◽  
Fei Song ◽  
Rong Ding ◽  
...  

It has been demonstrated that the inflammatory response influences cancer development and can be used as a prognostic biomarker in various tumors. However, the relevance of genes associated with inflammatory responses in hepatocellular carcinoma (HCC) remains unknown. The Cancer Genome Atlas (TCGA) database was analyzed using weighted gene coexpression network analysis (WGCNA) and differential analysis to discover essential inflammatory response-related genes (IFRGs). Cox regression studies, both univariate and multivariate, were employed to develop a prognostic IFRGs signature. Additionally, Gene Set Enrichment Analysis (GSEA) was used to deduce the biological function of the IFRGs signature. Finally, we estimated immune cell infiltration using a single sample GSEA (ssGSEA) and x-cell. Our results revealed that, among the major HCC IFRGs, two (DNASE1L3 and KLKB1) were employed to create a predictive IFRG signature. The IFRG signature could correctly predict overall survival (O.S) as per Kaplan-Meier time-dependent roc curves analysis. It was also linked to pathological tumor stage and T stage and might be used as a prognostic predictor in HCC. GSEA analysis concluded that the IFRG signature might influence the immune response in HCC. Immunological cell infiltration and immune checkpoint molecule expression differed in the high-risk and low-risk groups. As a result of our findings, DNASILE may play a role in the tumor microenvironment. However, more research is necessary to confirm the role of DNASE1L3 and KLKB1.


2021 ◽  
pp. 1-12
Author(s):  
Mingxin Cui ◽  
Fengzhi Qu ◽  
Libing Wang ◽  
Xiaogang Liu ◽  
Jingkun Yu ◽  
...  

Hepatocellular carcinoma (HCC) is a cancer with relatively high mortality, yet little attention has been devoted for related prognostic biomarkers. This study analyzed differential expression of m5C RNA methyltransferase-related genes in normal samples and tumors samples in TCGA-LIHC using Wilcoxon test. K-means consensus clustering analysis was implemented to subdivide samples. Independent prognostic factors were screened by univariate and multivariate Cox regression analyses. KEGG pathway enrichment analysis was performed on the screened independent prognostic factor using GSEA tools. qPCR was conducted to test mRNA expression of key m5C RNA methyltransferase-related genes in tissues and cells. There were 7 m5C RNA methyltransferase-related genes (NOP2, NSUN4, etc.) differentially expressed in HCC tumor tissues. HCC samples were classified into 3 subgroups through clustering analysis according to the expression mode of m5C RNA methyltransferase-related genes. It was also discovered that patients in different subgroups presented significant differences in survival rate and distribution of grade. Additionally, NOP2, NSUN4 and NSUN5 expression notable varied in different grades. Through regression analyses combined with various clinical pathological factors, it was displayed that NSUN4 could work as an independent prognostic factor. KEGG analysis showed that NSUN4 mainly enriched in signaling pathways involved in ADHERENS JUNCTION, RNA DEGRADATION, MTOR SIGNALING PATHWAY, COMPLEMENT and COAGULATION CASCADES. As examined by qPCR, NSUN4 was conspicuously upregulated in HCC patient’s tissues and cells. Altogether, our study preliminarily developed a novel biomarker that could be independently used in prognosis of HCC, which may provide a new direction for the study of related molecular mechanism or treatment regimen.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yumei Fan ◽  
Jiajie Hou ◽  
Xiaopeng Liu ◽  
Bihui Han ◽  
Yanxiu Meng ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common malignancies and ranks as the second leading cause of cancer-related mortality worldwide. Heat shock factor 2 (HSF2) is a transcription factor that plays a critical role in development, particularly corticogenesis and spermatogenesis. However, studies examining the expression and prognostic value of HSF2 and its association with tumor-infiltrating immune cells in HCC are still rare. In the present study, we found that HSF2 expression was significantly upregulated in HCC tissues compared with normal liver tissues using the TCGA, ICGC, GEO, UALCAN, HCCDB and HPA databases. High HSF2 expression was associated with shorter survival of patients with HCC. Cox regression analyses and nomogram were used to evaluate the association of HSF2 expression with the prognosis of patients with HCC. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) revealed that HSF2 was associated with various signaling pathways, including the immune response. Notably, HSF2 expression was significantly correlated with the infiltration levels of different immune cells using the TIMER database and CIBERSORT algorithm. HSF2 expression also displayed a significant correlation with multiple immune marker sets in HCC tissues. Knockdown of HSF2 significantly inhibited the proliferation, migration, invasion and colony formation ability of HCC cells. In summary, we explored the clinical significance of HSF2 and provided a therapeutic basis for the early diagnosis, prognostic judgment, and immunotherapy of HCC.


Author(s):  
Masatoshi Kudo ◽  
Kazuomi Ueshima ◽  
Yasutaka Chiba ◽  
Sadahisa Ogasawara ◽  
Shuntaro Obi ◽  
...  

Background In SILIUS (NCT01214343), combination of sorafenib and hepatic arterial infusion chemotherapy did not significantly improve overall survival in patients with advanced hepatocellular carcinoma (HCC) compared with sorafenib alone. In this study, we explored the relationship between objective response by mRECIST and overall survival (OS) in the sorafenib group, in the combination group and in all patients in the SILIUS trial. Methods Association between objective response and OS in patients treated with sorafenib (n=103), combination (n=102) and all patients (n=205) were analyzed. The median OS of responders was compared with that of non-responders. Landmark analyses were performed according to objective response at several fixed time points, as sensitivity analyses, and the effect on OS was evaluated by Cox regression analysis with objective response as a time-dependent covariate, with other prognostic factors was performed. Results In the sorafenib group, OS of responders (n = 18) was significantly better than that of non-responders (n = 78) (p < 0.0001), where median OS was 27.2 (95% CI, 16.0–not reached) months for responders and 8.9 (95% CI, 6.5–12.6) months for non-responders. HRs from landmark analyses at 4, 6, and 8 months were 0.45 (p=0.0330), 0.37 (p=0.0053), and 0.36 (p=0.0083), respectively. Objective response was an independent predictor of OS based on unstratified Cox regression analyses. In the all patients and the combination group, similar results were obtained. Conclusion In the SILIUS trial, objective response was an independent prognostic factor for OS in patients with HCC.


2021 ◽  
Author(s):  
Renjie Liu ◽  
Guifu Wang ◽  
Chi Zhang ◽  
Dousheng Bai

Abstract Background: Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods: To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database(https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results: Compared to normal tissues, 43 highly up-regulated and 8 down-regulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated two-year or five-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion: Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types.Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


Sign in / Sign up

Export Citation Format

Share Document