scholarly journals Integrative Transcriptomic, Proteomic and Functional Analysis Reveals ATP1B3 as a Diagnostic and Potential Therapeutic Target in Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Lu ◽  
Shenglan Cai ◽  
Xiaozhen Peng ◽  
Ruochan Cheng ◽  
Yiya Zhang

The Na+/K+-ATPase (NKA), has been proposed as a signal transducer involving various pathobiological processes, including tumorigenesis. However, the clinical relevance of NKA in hepatocellular carcinoma (HCC) has not been well studied. This study revealed the upregulation of mRNA of ATP1A1, ATP1B1, and ATP1B3 in HCC using TCGA, ICGC, and GEO database. Subsequently, ATP1B3 was demonstrated as an independent prognostic factor of overall survival (OS) of HCC. To investigate the potential mechanisms of ATP1B3 in HCC, we analyzed the co-expression network using LinkedOmics and found that ATP1B3 co-expressed genes were associated with immune-related biological processes. Furthermore, we found that ATP1B3 was correlated immune cell infiltration and immune-related cytokines expression in HCC. The protein level of ATP1B3 was also validated as a prognostic significance and was correlated with immune infiltration in HCC using two proteomics datasets. Finally, functional analysis revealed that ATP1B3 was increased in HCC cells and tissues, silenced ATP1B3 repressed HCC cell proliferation, migration, and promoted HCC cell apoptosis and epithelial to mesenchymal transition (EMT). In conclusion, these findings proved that ATP1B3 could be an oncogene and it was demonstrated as an independent prognostic factor and correlated with immune infiltration in HCC, revealing new insights into the prognostic role and potential immune regulation of ATP1B3 in HCC progression and provide a novel possible therapeutic strategy for HCC.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15647-e15647
Author(s):  
Minglin Lin ◽  
Weijia Liao ◽  
Junfei Jin

e15647 Background:Neutral sphingomyelinase 1 (NSMase1) catalyzes sphingomyelin to generate ceramide and mediates tumor cell apoptosis; however, the roles of NSMase1 in hepatocellular carcinoma (HCC) remain unclear. This study aims to evaluate the clinical value and prognostic significance of NSMase1 in HCC. Methods:A total of 142 patients who underwent radical hepatectomy were involved in this study. The expression of NSMase1 in HCC tissues and adjacent nontumorous liver tissues (ANLTs) was detected by quantitative real-time polymerase chain reaction and immunohistochemistry, and the association between NSMase1 expression and clinicopathologic features as well as prognosis of HCC patients was analyzed. Univariate and multivariate analyses were applied to identify independent prognostic factors. Results: NSMase1, at both mRNA and protein levels, was significantly decreased in HCC tissues compared to ANLTs. Low NSMase1 expression was associated with tumor size ( P= 0.029), TNM stage ( P= 0.040) and recurrence ( P= 0.006). Statistically, both the overall survival (OS) and disease-free survival (DFS) of low NSMase1 expression group were significantly shorter compared with high NSMase1 expression group ( p= 0.001; p= 0.001; respectively). Remarkably, the multivariate analysis showed that the low NSMase1 expression was an independent prognostic factor for OS (hazard ratio = 1.840; 95% confidence interval, 1.178-2.875, P= 0.007) and DFS (hazard ratio = 1.706; 95% confidence interval, 1.096-2.655, P= 0.018) in all enrolled HCC patients. Conclusions: NSMase1 down-regulation might actually serve as an independent prognostic factor for HCC patients. However, the roles of “NSMase1-ceramide” metabolic network in HCC deserve further studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sang Yun Ha ◽  
Jeong Il Yu ◽  
Changhoon Choi ◽  
So Young Kang ◽  
Jae-Won Joh ◽  
...  

Abstract Downregulation of MicroRNA-122 (miR-122) and its association with cancer progression have been reported in hepatocellular carcinoma (HCC) cell line models and a limited number of HCC samples. Recently, restoration of miR-122 expression by direct delivery of miR-122 yielded promising results in HCCs. However, the prognostic effect of miR-122 expression in human HCC samples is not fully understood. We investigated the expression level of miR-122 by quantitative real-time polymerase chain reaction in 289 curatively resected HCC samples and 20 normal liver samples and evaluated the prognostic effect of miR-122 expression. The relative quantification value of miR-122 was much lower in HCC samples than in normal liver tissues. During a median 119 months of follow-up for survival, the low miR-122 expression group showed shorter recurrence-free survival (RFS) (p = 0.033) and intrahepatic recurrence-free survival (IHRFS) (p = 0.014), and a trend of short distant metastasis-free survival (DMFS) (p = 0.149) than high expression group. On multivariate analysis, miR-122 expression was an independent prognostic factor for RFS, IHRFS and DMFS. Downregulation of miR-122 expression, frequently found in HCC samples, was an independent prognostic factor for RFS after curative resection. Emerging therapeutic approaches targeting miR-122 could be applicable in patients with miR-122 downregulated hepatocellular carcinoma.


2020 ◽  
Author(s):  
Ruochan Chen ◽  
Yiya Zhang

Abstract Background: Hepatocellular carcinoma (HCC) has high mortality rate and is a serious disease burden globally. Hence, identification and characterization of novel biomarkers for the diagnosis and prognosis of HCC are critically important. The protein EPDR1 (ependymin related 1) is a member of piscine brain glycoproteins and is involved in cell adhesion. This is the first study to report the expression of EPDR1 and its prognostic significance, pathological role, and association with cancer immunity in HCC.Methods: The gene expression, prognostic, and clinicopathological analyses were performed based on the data obtained from multiple transcriptome databases. Protein expression of EPDR1 in HCC was verified using human protein atlas and CPTAC databases. Co-expression network analysis using the LinkedOmics database was performed to identify genes co-expressed with EPDR1 expression. Functional analysis of the co-expressed genes, including gene set enrichment analysis was performed to identify the functional role of EPDR1. The statistical analysis was conducted in R, and the relationship between EPDR1 expression and immune cell infiltration was analyzed using TIMER and CIBERSORT resources. Results: The expression of EPDR1 was found to be significantly higher in HCC tissues than in the normal tissues and is an independent prognostic factor for the overall survival of HCC patients. Further, a high level of EPDR1 was shown to be correlated with advanced stage of HCC. Functional analysis revealed that EPDR1 is associated with multiple signaling pathways as well as pathways related to cancer and apoptosis. Notably, EPDR1 expression significantly correlated with purity and the infiltration levels of B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC. Further, the EPDR1 expression significantly correlated with the expression of immune signatures, such as KIR2DL4, ITGAM, GATA3, STAT6, STAT5A, BCL6, STAT3, and HAVCR2.Conclusions: Our study identified EPDR1 as a novel prognostic biomarker in HCC. The expression of EPDR1 was shown to be associated with immune cell infiltration as well as the signature molecules that potentially regulate these processes during the carcinogenesis of HCC. With better understanding of its biological function, EPDR1 could become an effective target for HCC diagnosis and treatment in the future.


Author(s):  
Xiao-Wei Fu ◽  
Chun-Qing Song

Background: Hepatocellular carcinoma (HCC) is characterized by a poor prognosis and accounts for the fourth common cause of cancer-related deaths. Recently, pyroptosis has been revealed to be involved in the progression of multiple cancers. However, the role of pyroptosis in the HCC prognosis remains elusive.Methods: The clinical information and RNA-seq data of the HCC patients were collected from the TCGA-LIHC datasets, and the differential pyroptosis-related genes (PRG) were firstly explored. The univariate Cox regression and consensus clustering were applied to recognize the HCC subtypes. The prognostic PRGs were then submitted to the LASSO regression analysis to build a prognostic model in the TCGA training cohort. We further evaluated the predictive model in the TCGA test cohort and ICGC validation cohort (LIRI-JP). The accuracy of prediction was validated using the Kaplan—Meier (K-M) and receiver operating characteristic (ROC) analyses. The single-sample gene set enrichment analysis (ssGSEA) was used to determine the differential immune cell infiltrations and related pathways. Finally, the expression of the prognostic genes was validated by qRT-PCR in vivo and in vitro.Results: We identified a total of 26 differential PRGs, among which three PRGs comprising GSDME, GPX4, and SCAF11 were subsequently chosen for constructing a prognostic model. This model significantly distinguished the HCC patients with different survival years in the TCGA training, test, and ICGC validation cohorts. The risk score of this model was confirmed as an independent prognostic factor. A nomogram was generated indicating the survival years for each HCC patient. The ssGSEA demonstrated several tumor-infiltrating immune cells to be remarkably associated with the risk scores. The qRT-PCR results also showed the apparent dysregulation of PRGs in HCC. Finally, the drug sensitivity was analyzed, indicating that Lenvatinib might impact the progression of HCC via targeting GSDME, which was also validated in human Huh7 cells.Conclusion: The PRG signature comprised of GSDME, GPX4, and SCAF11 can serve as an independent prognostic factor for HCC patients, which would provide further evidence for more clinical and functional studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
De-Chen Yu ◽  
Xiang-Yi Chen ◽  
Xin Li ◽  
Hai-Yu Zhou ◽  
De-Quan Yu ◽  
...  

AbstractThe spindle and kinetochore-associated protein complex (Ska) is an essential component in chromosome segregation. It comprises three proteins (Ska1, Ska2, and Ska3) with theorized roles in chromosomal instability and tumor development, and its overexpression has been widely reported in a variety of tumors. However, the prognostic significance and immune infiltration of Ska proteins in hepatocellular carcinoma (HCC) are not completely understood. The bioinformatics tools Oncomine, UALCAN, gene expression profiling interactive analysis 2 (GEPIA2), cBioPortal, GeneMANIA, Metascape, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of the Ska protein complex in HCC patients. We found that the mRNA expression of the Ska complex was markedly upregulated in HCC. High expression of the Ska complex is closely correlated with tumor stage, patient race, tumor grade, and TP53 mutation status. In addition, high expression of the Ska complex was significantly correlated with poor disease-free survival, while the high expression levels of Ska1 and Ska3 were associated with shorter overall survival. The biological functions of the Ska complex in HCC primarily involve the amplification of signals from kinetochores, the mitotic spindle, and (via a MAD2 invasive signal) unattached kinetochores. Furthermore, the expression of the complex was positively correlated with tumor-infiltrating cells. These results may provide new insights into the development of immunotherapeutic targets and prognostic biomarkers for HCC.


2021 ◽  
Vol 22 (4) ◽  
pp. 1700
Author(s):  
Jihye Seo ◽  
Jain Ha ◽  
Eunjeong Kang ◽  
Haelim Yoon ◽  
Sewoong Lee ◽  
...  

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.


Sign in / Sign up

Export Citation Format

Share Document