scholarly journals Comprehensive Analysis of Regulatory Factors and Immune-Associated Patterns to Decipher Common and BRCA1/2 Mutation-Type-Specific Critical Regulation in Breast Cancer

Author(s):  
Yue Li ◽  
Wei Dong ◽  
Pengqian Zhang ◽  
Ting Zhang ◽  
Ling Ma ◽  
...  

Background:BRCA1/2 mutations are closely related to high lifetime risk of breast cancer (BC). The objective of this study was to identify the genes, regulators, and immune-associated patterns underlying disease pathology in BC with BRCA1/2 somatic mutations and their associations with clinical traits.Methods: RNA sequencing data and clinical information from The Cancer Genome Atlas (TCGA; N = 36 BRCA1-mutant BC; N = 49 BRCA2-mutant BC; and N = 117 BRCA1/2-wild-type BC samples) were used for discovery, which included consensus network analysis, function enrichment, and analysis of hub genes; other TCGA data (N = 117 triple-negative BC) and two Gene Expression Omnibus database expression profiles were used as validation cohorts.Results: Consensus network analysis helped to identify specific co-expressed modules that showed positive correlations with tumor stage, number of positive lymph nodes, and margin status in BRCA1/2-mutant BC but lacking correlations in BRCA1/2-wild-type BC. Functional enrichment suggested potential mechanisms in BRCA1/2 carriers that could regulate the cell cycle, immune response, cellular metabolic processes, and cell migration, via enriched pathways including p53 and JAK–STAT signaling. Consensus network analysis identified the specific and common carcinogenic mechanisms involving BRCA mutations. Regulators cross-linking these modules include E2F or IRF transcription factor family, associated with cell cycle or immune response regulation module, respectively. Eight hub genes, including ISG15, BUB1, and TTK, were upregulated in several BRCA1/2-mutant BC datasets and showed prognostic value in BC. Furthermore, their genetic expression was related to higher levels of immune infiltration in BRCA1/2-mutant BC, which manifested as recruitment of T helper cells (Th1 cells), follicular helper T cells, and regulatory T cells, and T cell exhaustion. Moreover, important indicators for evaluation of BC immunotherapy, tumor mutational burden and neoantigen load also positively correlated with expression of some hub genes.Conclusion: We constructed a BRCA1/2 mutation-type-specific co-expressed gene network with related transcription factors and immune-associated patterns that could regulate and influence tumor metastasis and immune microenvironment, providing novel insights into the pathological process of this disease and the corresponding BRCA mutations.

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Yadong Wu ◽  
Feng liu ◽  
Siyang Luo ◽  
Xinhai Yin ◽  
Dengqi He ◽  
...  

Abstract Breast cancer (BC) is the most common leading cause of cancer-related death in women worldwide. Gene expression profiling analysis for human BCs has been studied previously. However, co-expression analysis for BC cell lines is still devoid to date. The aim of the study was to identify key pathways and hub genes that may serve as a biomarker for BC and uncover potential molecular mechanism using weighted correlation network analysis. We analyzed microarray data of BC cell lines (GSE 48213) listed in the Gene Expression Omnibus database. Gene co-expression networks were used to construct and explore the biological function in hub modules using the weighted correlation network analysis algorithm method. Meanwhile, Gene ontology and KEGG pathway analysis were performed using Cytoscape plug-in ClueGo. The network of the key module was also constructed using Cytoscape. A total of 5000 genes were selected, 28 modules of co-expressed genes were identified from the gene co–expression network, one of which was found to be significantly associated with a subtype of BC lines. Functional enrichment analysis revealed that the brown module was mainly involved in the pathway of the autophagy, spliceosome, and mitophagy, the black module was mainly enriched in the pathway of colorectal cancer and pancreatic cancer, and genes in midnightblue module played critical roles in ribosome and regulation of lipolysis in adipocytes pathway. Three hub genes CBR3, SF3B6, and RHPN1 may play an important role in the development and malignancy of the disease. The findings of the present study could improve our understanding of the molecular pathogenesis of breast cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Gengsheng Shi ◽  
Zhenru Shen ◽  
Yi Liu ◽  
Wenqin Yin

Breast cancer (BC) is the leading cause of cancer death among women worldwide. The molecular mechanisms of its pathogenesis are still to be investigated. In our study, differentially expressed genes (DEGs) were screened between BC and normal tissues. Based on the DEGs, a weighted gene co-expression network analysis (WGCNA) was performed in 683 BC samples, and eight co-expressed gene modules were identified. In addition, by relating the eight co-expressed modules to clinical information, we found the blue module and pathological stage had a significant correlation (r = 0.24, p = 1e–10). Validated by multiple independent datasets, using one-way ANOVA, survival analysis and expression level revalidation, we finally screened 12 hub genes that can predict BC progression and prognosis. Functional annotation analysis indicated that the hub genes were enriched in cell division and cell cycle regulation. Importantly, higher expression of the 12 hub genes indicated poor overall survival, recurrence-free survival, and disease-free survival in BC patients. In addition, the expression of the 12 hub genes showed a significantly positive correlation with the expression of cell proliferation marker Ki-67 in BC. In summary, our study has identified 12 hub genes associated with the progression and prognosis of BC; these hub genes might lead to poor outcomes by regulating the cell division and cell cycle. These hub genes may serve as a biomarker and help to distinguish different pathological stages for BC patients.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehao Le ◽  
Hui Guo ◽  
Qiulei Zhang ◽  
Xiaojuan Huang ◽  
Ming Xu ◽  
...  

Abstract Breast cancer is the most frequently diagnosed malignancy among women, and triple-negative breast cancer (TNBC) is a highly aggressive subtype. Increasing evidence has shown that lncRNAs are involved in tumor growth, cell-cycle, and apoptosis through interactions with miRNAs or mRNAs. However, there is still limited data on ceRNAs involved in the molecular mechanisms underlying TNBC. In this study, we applied the weighted gene co-expression network analysis to the existing microarray mRNA and lncRNA expression data obtained from the breast tissues of TNBC patients to find the hub genes and lncRNAs involved in TNBC. Functional enrichment was performed on the module that correlated with Ki-67 status the most (Turquoise module). The hub genes in the Turquoise module were found to be associated with DNA repair, cell proliferation, and the p53 signaling pathway. We performed co-expression analysis of the protein-coding and lncRNA hub genes in the Turquoise module. Analysis of the RNA-seq data obtained from The Cancer Genome Atlas database revealed that the protein-coding genes and lncRNAs that were co-expressed were also differentially expressed in the TNBC tissues compared with the normal mammary tissues. On the basis of establishing the ceRNA network, two mRNAs (RAD51AP1 and TYMS) were found to be correlated with overall survival in TNBC. These results suggest that TNBC-specific mRNA and lncRNAs may participate in a complex ceRNA network, which represents a potential therapeutic target for the treatment of TNBC.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractTriple receptor negative breast cancer (TNBC) is the type of gynecological cancer in the elderly women. This study is aimed to explore molecular mechanism of TNBC via bioinformatics analysis. The gene expression profiles of GSE88715 (including 38 TNBC and 38 normal control) was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the limma package in R software. Pathway and gene ontology (GO) enrichment analysis were performed based on various pathway dabases and GO database. Then, InnateDb interactome database, Cytoscape and PEWCC1 were applied to construct the protein-protein interaction (PPI) network and screen hub genes. Similarly, miRNet database, NetworkAnalyst database and Cytoscape were applied to construct the target gene - miRNA network and target gene - TF network, and screen targate genes. Pathway and GO enrichment analysis was further performed for hub genes, gene clusters identified via module analysis and targate genes. The expression of hub genes with prognostic values was validated on the UALCAN, cBio Portal, The Human Protein Atlas, receiver operator characteristic (ROC) curve analysis, RT-PCR analysis and immune infiltration analysis. A total of 949 DEGs were identified in TNBC (469 up regulated genes, and 480 down regulated genes), and they were mainly enriched in the terms of phospholipases, toxoplasmosis, immune response, cell surface, glycolysis, biosynthesis of amino acids, carboxylic acid metabolic process and organic substance catabolic process extracellular space. Hub genes including UBD, HLA-B, MYC and HSP90AB1 were identified via PPI network and modules, which were mainly enriched in immune response, antigen processing and presentation, cell cycle and pathways in cancer. Targate genes including CCDC80, PEG10, HOPX and CCNA2 were identified via target gene - miRNA network and target gene - TF network, which were mainly enriched in extracellular structure organization, validated targets of C-MYC transcriptional activation, ensemble of genes encoding core extracellular matrix including ECM glycoproteins and cell cycle. The top five significantly overexpressed mRNA (ADAM15, BATF, NOTCH3, ITGAX and SDC1) and the top five significantly underexpressed mRNA (RPL4, EEF1G, RPL3, RBMX and ABCC2) were selected for further validation in TNBCpatients and healthy controls. Analysis of the expression of genes in the various databases showed that ADAM15, BATF, NOTCH3, ITGAX, SDC1, RPL4, EEF1G, RPL3, RBMX and ABCC2 expressions have a cancer specific pattern in TNBC. Collectively, ADAM15, BATF, NOTCH3, ITGAX, SDC1, RPL4, EEF1G, RPL3, RBMX and ABCC2 may be useful candidate biomarkers for TNBC diagnosis, prognosis and theraputic targates.


2020 ◽  
Author(s):  
Jinbao Yin ◽  
Chen Lin ◽  
Meng jiang ◽  
Xinbing Tang ◽  
Danlin Xie ◽  
...  

Abstract BackgroundAs a highly prevalent tumor disease worldwide, Further elucidation of the molecular mechanisms of the occurrence, development and prognosis of breast cancer remain an urgent need. Identifying hub genes involved in these pathogenesis and progression can potentially help to unveil its mechanism and provide novel diagnostic and prognostic markers for breast cancer.MethodsIn this study, we systematically integrated multiple bioinformatic methods, including robust rank aggregation (RRA), functional enrichment analysis, protein-protein interaction (PPI) networks construction and analysis, weighted gene co-expression network analysis (WGCNA), ROC and Kaplan-Meier analyses, DNA methylation analyses and genomic mutation analyses, GSEA and GSVA, based on ten mRNA datasets to identify and investigate novel hub genes involved in breast cancer. In parallel, RNA in situ detection technology was applied to validate those novel hub gene.ResultsEZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4 and MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. Among those five hub genes, many studies on EZH2 gene in breast cancer have been reported, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These novel four hub genes were up-regulated in breast cancer tissues and associated with tumor progression. ROC and Kaplan-Meier indicated these four hub genes all showed good diagnostic performance and prognostic values for breast cancer. The preliminary analysis revealed those novel hub genes are four potentially candidate genes for further exploring the molecular mechanism of breast cancer.ConclusionWe identify four novel hub genes (CENPL, ISG20L2, MRPL3, and LSM4) that are likely playing key roles in the molecular mechanism of occurrence and development of breast cancer. Those hub genes are four potentially candidate genes served as promising candidate diagnostic biomarkers and prognosis predictors for breast cancer, and their exact functional mechanisms in breast cancer deserve further in-depth study.


2021 ◽  
Author(s):  
xixun zhang

Abstract Backgroud: Breast cancer (BC) is an aggressive cancer with a high percentage recurrence and metastasis. As one of the most common distant metastasis organ in breast cancer, lung metastasis has a worse prognosis than that of liver and bone. Therefore, it’s important to explore some potential prognostic markers associated with the lung metastasis in breast cancer for preventive treatment. Methods: In our study, transcriptomic data and clinical information of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. Co-expression modules was built by Weighted gene co-expression network analysis (WGCNA) to find out the royalbule modules which is significantly associated with lung metastasis in breast cancer. Then, co-expression genes were analyzed for functional enrichment. Furthermore, the prognostic value of these genes was assessed by GEPIA Database and Kaplan-Meier Plotter. Results: Results showed that the hub genes, LMNB and CDC20, were up-regulated in breast cancer and indicated worse survival. Therefore, we speculate that these two genes play crucial roles in the process of lung metastasis in breast cancer, and can be used as potential prognostic markers in lung metastasis of breast cancer. Conclusion: Collectively, our study identified two potential key genes in the lung metastasis of breast cancer, which might be applied as the prognostic markers of the precise treatment in breast cancer with lung metastasis.


2020 ◽  
Author(s):  
Weipeng Zhao ◽  
Linlin Sun ◽  
Xichuan Li ◽  
Jun Wang ◽  
Ye Zhu ◽  
...  

Abstract Neoadjuvant chemotherapy (NACT) represents a standard option for breast cancer. Unfortunately, about 55% to 80% of breast cancer patients do not have a favorable response to chemotherapy. Highly specific tumor biomarker that can predict the pathological response to neoadjuvant chemotherapy is lacking. Stearoyl-CoA desaturase 5 (SCD5) is an integral membrane protein of the endoplasmic reticulum that participates in lipid metabolism. However, the role of SCD5 in breast cancer remains unclear. Our study aims to understand its expression signature, prognosis value and correlation with pathological response to NACT in breast cancer using public databases. Analysis of samples from public databases showed that SCD5 expression was down-regulated across human cancers and associated with more aggressive breast cancer phenotypes. Survival analysis revealed that SCD5 expression was related to prognosis in breast cancer, especially triple-negative breast cancer (TNBC). Integrated analysis of multiple public datasets indicated that SCD5 expression signature was associated with response to NACT, particularly in TNBC. Based on functional enrichment analysis, SCD5 was implicated in pathways involved in metabolism and cell cycle. SCD5-related biological functions included negative regulation of cell cycle, cell division and DNA repair. Moreover, a significantly negative correlation between SCD5 expression and several cell cycle regulators was noted. Taken together, SCD5 was involved in the development and progression of breast cancer and might be a predictive biomarker for response to NACT. These results provided information for us to better understand SCD5 from the perspective of bioinformatics and highlighted the clinical importance of SCD5 in breast cancer, especially TNBC.


2021 ◽  
Vol 7 ◽  
Author(s):  
Tao Yan ◽  
Shijie Zhu ◽  
Miao Zhu ◽  
Chunsheng Wang ◽  
Changfa Guo

Background: Atrial fibrillation (AF) is the most common tachyarrhythmia in the clinic, leading to high morbidity and mortality. Although many studies on AF have been conducted, the molecular mechanism of AF has not been fully elucidated. This study was designed to explore the molecular mechanism of AF using integrative bioinformatics analysis and provide new insights into the pathophysiology of AF.Methods: The GSE115574 dataset was downloaded, and Cibersort was applied to estimate the relative expression of 22 kinds of immune cells. Differentially expressed genes (DEGs) were identified through the limma package in R language. Weighted gene correlation network analysis (WGCNA) was performed to cluster DEGs into different modules and explore relationships between modules and immune cell types. Functional enrichment analysis was performed on DEGs in the significant module, and hub genes were identified based on the protein-protein interaction (PPI) network. Hub genes were then verified using quantitative real-time polymerase chain reaction (qRT-PCR).Results: A total of 2,350 DEGs were identified and clustered into eleven modules using WGCNA. The magenta module with 246 genes was identified as the key module associated with M1 macrophages with the highest correlation coefficient. Three hub genes (CTSS, CSF2RB, and NCF2) were identified. The results verified using three other datasets and qRT-PCR demonstrated that the expression levels of these three genes in patients with AF were significantly higher than those in patients with SR, which were consistent with the bioinformatic analysis.Conclusion: Three novel genes identified using comprehensive bioinformatics analysis may play crucial roles in the pathophysiological mechanism in AF, which provide potential therapeutic targets and new insights into the treatment and early detection of AF.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243507
Author(s):  
Zhihong Wu ◽  
Erhan Hai ◽  
Zhengyang Di ◽  
Rong Ma ◽  
Fangzheng Shang ◽  
...  

Objective Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. Methods We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45–135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). Results Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n


Sign in / Sign up

Export Citation Format

Share Document