scholarly journals Transcriptome-wide N6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus)

Author(s):  
Xinran Yang ◽  
Jianfang Wang ◽  
Xinhao Ma ◽  
Jiawei Du ◽  
Chugang Mei ◽  
...  

N6-methyladenosine (m6A) is the most prevalent methylation modification of eukaryotic mRNA, and it plays an important role in regulating gene expression. Previous studies have found that m6A methylation plays a role in mammalian skeletal muscle development. However, the effect of m6A on bovine skeletal myogenesis are still unclear. Here, we selected proliferating myoblasts (GM) and differentiated myotubes (on the 4th day of differentiation, DM) for m6A-seq and RNA-seq to explore the m6A methylation modification pattern during bovine skeletal myogenesis. m6A-seq analysis revealed that m6A methylation was an abundant modification of the mRNA in bovine myoblasts and myotubes. We scanned 5,691–8,094 m6A-modified transcripts, including 1,437 differentially methylated genes (DMGs). GO and KEGG analyses revealed that DMGs were primarily involved in transcriptional regulation and RNA metabolism, as well as insulin resistance and metabolic pathways related to muscle development. The combined analysis further identified 268 genes that had significant changes at both m6A and mRNA levels, suggesting that m6A modification may regulate myoblast differentiation by mediating the expression of these genes. Furthermore, we experimentally confirmed four genes related to myogenesis, including MYOZ2, TWIST1, KLF5 and MYOD1, with differential changes in both m6A and mRNA levels during bovine myoblast differentiation, indicating that they can be potential candidate targets for m6A regulation of skeletal myogenesis. Our results may provide new insight into molecular genetics and breeding of beef cattle, and provide a reference for investigating the mechanism of m6A regulating skeletal muscle development.

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1325
Author(s):  
Xiuxue Dong ◽  
Yu Cheng ◽  
Lingyun Qiao ◽  
Xin Wang ◽  
Cuiping Zeng ◽  
...  

Previous studies have shown that gga-miR-2954 was highly expressed in the gonads and other tissues of male chickens, including muscle tissue. Yin Yang1 (YY1), which has functions in mammalian skeletal muscle development, was predicted to be a target gene of gga-miR-2954. The purpose of this study was to investigate whether gga-miR-2954 plays a role in skeletal muscle development by targeting YY1, and evaluate its function in the sexual dimorphism development of chicken muscle. Here, all the temporal and spatial expression profiles in chicken embryonic muscles showed that gga-miR-2954 is highly expressed in males and mainly localized in cytoplasm. Gga-miR-2954 exhibited upregulated expression of in vitro myoblast differentiation stages. Next, through the overexpression and loss-of-function experiments performed in chicken primary myoblasts, we found that gga-miR-2954 inhibited myoblast proliferation but promoted differentiation. During myogenesis, gga-miR-2954 could suppress the expression of YY1, which promoted myoblast proliferation and inhibited the process of myoblast cell differentiation into multinucleated myotubes. Overall, these findings reveal a novel role of gga-miR-2954 in skeletal muscle development through its function of the myoblast proliferation and differentiation by suppressing the expression of YY1. Moreover, gga-miR-2954 may contribute to the sex difference in chicken muscle development.


2019 ◽  
Vol 20 (20) ◽  
pp. 5130 ◽  
Author(s):  
Shunshun Han ◽  
Can Cui ◽  
Haorong He ◽  
Xiaoxu Shen ◽  
Yuqi Chen ◽  
...  

Myoferlin (MyoF), which is a calcium/phospholipid-binding protein expressed in cardiac and muscle tissues, belongs to the ferlin family. While MyoF promotes myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that MyoF not only promotes C2C12 myoblast differentiation, but also inhibits muscle atrophy and autophagy. In the present study, we found that myoblasts fail to develop into mature myotubes due to defective differentiation in the absence of MyoF. Meanwhile, MyoF regulates the expression of atrophy-related genes (Atrogin-1 and MuRF1) to rescue muscle atrophy. Furthermore, MyoF interacts with Dishevelled-2 (Dvl-2) to activate canonical Wnt signaling. MyoF facilitates Dvl-2 ubiquitination resistance by reducing LC3-labeled Dvl-2 levels and antagonizing the autophagy system. In conclusion, we found that MyoF plays an important role in myoblast differentiation during skeletal muscle atrophy. At the molecular level, MyoF protects Dvl-2 against autophagy-mediated degradation, thus promoting activation of the Wnt/β-catenin signaling pathway. Together, our findings suggest that MyoF, through stabilizing Dvl-2 and preventing autophagy, regulates Wnt/β-catenin signaling-mediated skeletal muscle development.


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12409-12419
Author(s):  
Di Zhou ◽  
Houqiang Xu ◽  
Wei Chen ◽  
Yuanyuan Wang ◽  
Ming Zhang ◽  
...  

The MyoD1 gene plays a key role in regulating the myoblast differentiation process in the early stage of skeletal muscle development.


2003 ◽  
Vol 163 (5) ◽  
pp. 931-936 ◽  
Author(s):  
Ebru Erbay ◽  
In-Hyun Park ◽  
Paul D. Nuzzi ◽  
Christopher J. Schoenherr ◽  
Jie Chen

Insulin-like growth factors (IGFs) are essential for skeletal muscle development, regeneration, and hypertrophy. Although autocrine actions of IGF-II are known to initiate myoblast differentiation, the regulatory elements and upstream signaling pathways for myogenic expression of IGF-II remain elusive. Here, we report the regulation of IGF-II transcription by mTOR, as well as by amino acid sufficiency, through the IGF-II promoter 3 and a downstream enhancer during C2C12 myoblast differentiation. Furthermore, we present evidence that IGF production, and not IGF signaling, is the primary target for mTOR's function in the initiation of differentiation. Moreover, myogenic signaling by mTOR is independent of its kinase activity and mediated by the PI3K–Akt pathway. Our findings represent the first identification of a signaling pathway that regulates IGF-II expression in myogenesis and implicate the mTOR–IGF axis as a molecular link between nutritional levels and skeletal muscle development.


2018 ◽  
Vol 19 (7) ◽  
pp. 2082
Author(s):  
Xiaotong Su ◽  
Yanfang Zhao ◽  
Yaning Wang ◽  
Le Zhang ◽  
Linsen Zan ◽  
...  

RING1 and YY1 binding protein (Rybp) genes inhibit myogenesis in mice, but there are no reports on the effects of these genes in cattle. The aim of this study is to investigate the roles of the Rybp gene on bovine skeletal muscle development and myoblast differentiation. In the present study, the Rybp gene was overexpressed in bovine myoblasts via adenovirus. RNA-seq was performed to screen differentially expressed genes (DEGs). The results showed that overexpressing the Rybp gene inhibits the formation of myotubes. The morphological differences in myoblasts began on the second day and were very significant 6 days after adenovirus induction. A total of 1311 (707 upregulated and 604 downregulated) DEGs were screened using RNA-seq between myoblasts with added negative control adenoviruses (AD-NC) and Rybp adenoviruses (AD-Rybp) after 6 days of induction. Gene ontology (GO) and KEGG analysis revealed that the downregulated DEGs were mainly involved in biological functions related to muscle, and, of the 32 pathways, those associated with muscle development were significantly enriched for the identified DEGs. This study can not only provide a theoretical basis for the regulation of skeletal muscle development in cattle by exploring the roles of the Rybp gene in myoblast differentiation, but it can also lay a theoretical foundation for molecular breeding of beef cattle.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 156 ◽  
Author(s):  
Liang Hu ◽  
Xie Peng ◽  
Fei Han ◽  
Fali Wu ◽  
Daiwen Chen ◽  
...  

Piglets with light weaning weight commonly have a slow post-weaning growth rate due to impaired skeletal muscle development. Therefore, the present study aimed to investigate the impact of birth weight and nutrient intake on skeletal muscle development, myofiber maturation, and metabolic status of early-weaned piglets. Twelve pairs of normal birth weight and intrauterine growth-retarded (IUGR) piglets (seven days old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake for 21 days. Serum and muscle samples were collected for further analysis. The results indicated that muscle weight, cross-sectional areas, and muscular glycogen were lower (p < 0.05) in both IUGR and restricted fed piglets. Nutrient restriction decreased the contents of RNA, the RNA to DNA ratio, and the percentages of myosin heavy chain (MyHC) IIx (p < 0.05), whereas increased the activity of β-hydroxy-acyl-CoA-dehydrogenase (HAD), the ratio of HAD to citrate synthase, as well as the percentages of MyHC I (p < 0.05). In addition, nutrient restriction significantly decreased muscular glycogen, mRNA levels of fatty acid transport protein 1, cationic amino acid transporter 1, and glucose transporter 4 in IUGR piglets compared with the other groups (p < 0.05). The results of the present study showed that IUGR impaired skeletal muscle growth and disturbed the hormone and mRNA expression of genes related to energy metabolism, which led to a more severe energy deficit when receiving postnatal nutritional restriction. Postnatal nutritional restriction resulted in delayed myofiber maturation of the piglets, which may be associated with the transformation of MyHC isoform and the change of metabolic status.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tieshan Xu ◽  
Zijie Xu ◽  
Lizhi Lu ◽  
Tao Zeng ◽  
Lihong Gu ◽  
...  

Abstract Background The number of myofiber is determined during the embryonic stage and does not increase during the postnatal period for birds, including goose. Thus, muscle production of adult goose is pre-determined during embryogenesis. Previous studies show N6-methyladenosine (m6A) is an important regulator for skeletal muscle development of birds and miRNAs play as a co-regulator for the skeletal muscle development in birds. Herein, we sequenced m6A and miRNA transcriptomes to investigate the profiles of m6A and their potential mechanism of regulating breast muscle development in Dingan Goose. Results We selected embryonic 21th day (E21) and embryonic 30th day (E30) to investigate the roles of transcriptome-wide m6A modification combining with mRNAs and miRNAs in goose breast muscle development. In this study, m6A peaks were mainly enriched in coding sequence (CDS) and start codon and397 genes were identified as differentially methylated genes (DMGs). GO and KEGG analysis showed that DMGs were highly related to cellular and metabolic process and that most DMGs were enriched in muscle-related pathways including Wnt signaling pathway, mTOR signaling and FoxO signaling pathway. Interestingly, a negative correlation between m6A methylation level and mRNA abundance was found through the analysis of m6A-RNA and RNA-seq data. Besides, we found 26 muscle-related genes in 397 DMGs. We also detected 228 differentially expressed miRNAs (DEMs), and further found 329 genes shared by the target genes of DEMs and DMGs (m6A-miRNA-genes), suggesting a tightly relationship between DEMs and DMGs. Among the m6A-miRNA-genes, we found 10 genes are related to breast muscle development. We further picked out an m6A-miRNA-gene, PDK3, from the 10 genes to visualize it and the result showed differentially methylated peaks on the mRNA transcript consistent with our m6A-seq results. Conclusion GO and KEGG of DMGs between E21 and E30 showed most DMGs were muscle-related. In total, 228 DEMs were found, and the majority of DMGs were overlapped with the targets of DEGs. The differentially methylated peaks along with an m6A-miRNA-gene, PDK3, showed the similar results with m6A-seq results. Taken together, the results presented here provide a reference for further investigation of embryonic skeletal muscle development mechanism in goose.


Sign in / Sign up

Export Citation Format

Share Document