scholarly journals CircCRIM1 Promotes Hepatocellular Carcinoma Proliferation and Angiogenesis by Sponging miR-378a-3p and Regulating SKP2 Expression

Author(s):  
Yang Ji ◽  
Shikun Yang ◽  
Xueqi Yan ◽  
Li Zhu ◽  
Wenjie Yang ◽  
...  

Mounting evidence has demonstrated that circular RNAs have an important function in tumorigenesis and cancer evolvement. CircCRIM1 has been shown to be a poor prognostic element in multiple human malignancies. However, the clinical significance and mechanism of circCRIM1 in hepatocellular carcinoma (HCC) is still unclear. The present study confirmed the expression level of circCRIM1 using quantitative real-time PCR. In addition, circCRIM1 siRNA and overexpression vectors were used for transfection into LM3 or Huh7 cells to down- or up-regulate the expression of circCRIM1. In vitro and in vivo experiments were performed to explore the function of circCRIM1 in HCC. RNA pull-down, RNA immunoprecipitation, fluorescent in situ hybridization, and luciferase reporter assays were conducted to confirm the relationship between miR-378a-3p and circCRIM1 or S-phase kinase-associated protein 2 (SKP2) in HCC. Then, circCRIM1 was up-regulated in HCC and its expression level was significantly associated with poor prognosis and clinicopathologic characteristics. CircCRIM1 enhanced the proliferation and angiogenesis of HCC cells in vitro and promoted xenograft growth in vivo. Moreover, circCRIM1 upregulated the expression of SKP2 by functioning as a sponge for miR-378a-3p. These findings suggest that circCRIM1 boosts the HCC progression via the miR-378-3p/SKP2 axis and may act as a crucial epigenetic therapeutic molecule target in HCC.

2021 ◽  
Author(s):  
Shiji Fang ◽  
Weiqian Chen ◽  
Jiayi Ding ◽  
Dengke Zhang ◽  
Liyun Zheng ◽  
...  

Abstract Background: The regulatory loop between circular RNAs and microRNAs has a vital role in cell death. Ferroptosis is the form of iron-dependent cell death, which is distinct from necroptosis and apoptosis. Increasing evidences showed that ferroptosis is an important form of cell death in hepatocellular carcinoma.Methods: Real-time PCR were used to examine the expression level of circ_0013731 in hepatocellular carcinoma tissues. Edu and colony formation were performed to detect the cell proliferation. A luciferase reporter assay was used to determine the relationship between circ_0013731, miR-877-3p and SLC7A11. ChIP-qPCR assays were performed to examine the potential binding of E2F1 to the circ_0013731 promoter. Iron Assay Kit (Sigma Aldrich) was used to detect total iron or Fe2+. C11 BODIPY 581/591 staining and flow cytometer were used to examine the Lipid ROS. The role of circ_0013731 was examined in xenograft tumors model. Results: We revealed that the expression level of circ_0013731 was elevated in hepatocellular carcinoma. Moreover, E2F1 promote the transcription of circ_0013731. Overexpression of circ_0013731 promoted cell growth and inhibited ferroptosis in SMMC-7721 and QGY-7703 in vitro. miR-877-3p was proved as the direct target of circ_0013731. Then, inhibition of miR-877-3p enhanced cell growth and inhibited ferroptosis. Further mechanism research demonstrated that circ_0013731 upregulated the expression level of SLC7A11 by sponging miR-877-3p. Finally, circ_0013731 promoted HCC growth via miR-877-3p/ SLC7A11 axis in vivo.Conclusions: Our data reveal that circ_0013731 mediated by E2F1 facilitates cell growth and suppressed the ferroptosis via miR-877-3p/ SLC7A11 axis in hepatocellular carcinoma. Therefore, circ_0013731 could be acted as potential therapeutical target for hepatocellular carcinoma.


2020 ◽  
Author(s):  
Zhongwei Zhao ◽  
Jingjing Song ◽  
Dengke Zhang ◽  
Fazong Wu ◽  
Jianfei Tu ◽  
...  

Abstract Background: The regulatory loop between circular RNAs and microRNAs has a vital role in cell death. Ferroptosis is the form of iron-dependent cell death, which is distinct from necroptosis and apoptosis. Increasing evidences showed that ferroptosis is an important form of cell death in hepatocellular carcinoma.Methods: Real-time PCR were used to examine the expression level of circ_0013731 in hepatocellular carcinoma tissues. Edu and colony formation were performed to detect the cell proliferation. A luciferase reporter assay was used to determine the relationship between circ_0013731, miR-877-3p and SLC7A11. ChIP-qPCR assays were performed to examine the potential binding of E2F1 to the circ_0013731 promoter. Iron Assay Kit (Sigma Aldrich) was used to detect total iron or Fe2+. C11 BODIPY 581/591 staining and flow cytometer were used to examine the Lipid ROS. The role of circ_0013731 was examined in xenograft tumors model. Results: We revealed that the expression level of circ_0013731 was elevated in hepatocellular carcinoma. Moreover, E2F1 promote the transcription of circ_0013731. Overexpression of circ_0013731 promoted cell growth and inhibited ferroptosis in SMMC-7721 and QGY-7703 in vitro. miR-877-3p was proved as the direct target of circ_0013731. Then, inhibition of miR-877-3p enhanced cell growth and inhibited ferroptosis. Further mechanism research demonstrated that circ_0013731 upregulated the expression level of SLC7A11 by sponging miR-877-3p. Finally, circ_0013731 promoted HCC growth via miR-877-3p/ SLC7A11 axis in vivo.Conclusions: Our data reveal that circ_0013731 mediated by E2F1 facilitates cell growth and suppressed the ferroptosis via miR-877-3p/ SLC7A11 axis in hepatocellular carcinoma. Therefore, circ_0013731 could be acted as potential therapeutical target for hepatocellular carcinoma.


2020 ◽  
Author(s):  
Dianqi Hou ◽  
Zhenlin Wang ◽  
Haimeng Li ◽  
Juan Liu ◽  
Yaohua Liu ◽  
...  

Abstract background: Glioblastoma Multiform (GBM) is the primary malignancy with the highest incidence and worst prognosis in the adult CNS. Circular RNAs (circRNAs) are a novel and widely diverse class of endogenous non-coding RNAs that can promote or inhibit gliomagenesis. Our study aimed to explore the role of circASPM in GBM and its molecular mechanism.Methods: Levels of circASPM, miR-130b-3p and E2F1 were determined by quantitative real-time PCR (qRT-PCR) or western blotting assay. MTS, Edu, neurospheres formation and extreme limiting dilution assays were used to detect the tumorigenesis and proliferation of GSCs in vitro. The interactions between miR-130b-3p and circASPM or E2F1 was demonstrated via qPCR, western blotting, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft experiments was used to analyze tumor growth in vivo.Results: CircASPM was overexpressed in GBM and could promote the tumorigenesis and proliferation of GSCs both in vitro and in vivo. Mechanistically, circASPM up-regulated the expression of E2F1 in GSCs via miR-130b-3p sponging. We furtherly demonstrated that circAPSM could promote the GSCs proliferation via E2F1 up-regulating. Therefore, our study identified a novel circRNA and its possible mechanism in the development and tumorigenesis of GBM.Conclusions: CircASPM can promote GBM progression via regulating miR-130b-3p/E2F1 axis, suggesting that circAPSM could provide an effective biomarker for GBM diagnosis and prognostic evaluation and possibly being used for molecular targeted therapy.


2020 ◽  
Author(s):  
Weisheng Guo ◽  
Lin Zhao ◽  
Yaguang Wei ◽  
Peng Liu ◽  
Yu Zhang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the leading threat of cancer-related death in humans with poor therapeutic effects. Circular RNAs (circRNAs) are important indicators in cancer diagnosis and prognosis. This study intended to explore the function and mechanism of circ_0015756 in HCC, providing the additional opinion for HCC treatment.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of circ_0015756 and miR-610. Cell viability was assessed by cell counting kit-8 (CCK-8) assay, and colony formation capacity was ascertained by colony formation assay. Cell proliferation and invasion were monitored by transwell assay. Cell cycle progression and apoptosis were analyzed by flow cytometry assay. Circ_0015756 oncogenicity was determined by Xenograft models. The prediction of targets was performed using the bioinformatics tools, and the verification of targeted relationship was conducted using RNA pull-down, RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The expression level of fibroblast growth factor receptor 1 (FGFR1) was measured by western blot.Result: The expression of circ_0015756 was increased in HCC tissues, serums and cells. Circ_0015756 downregulation impaired HCC cell viability, colony formation capacity, invasion and migration, induced cell cycle arrest and apoptosis, and inhibited tumor growth in vivo. MiR-610 was ensured as a target of circ_0015756, and miR-610 absence reversed the effects of circ_0015756 downregulation. Further, FGFR1 was interacted by miR-610, and FGFR1 overexpression overturned the effects of miR-610 restoration in vitro. Circ_0015756 could regulate FGFR1 expression by targeting miR-610.Conclusion: Circ_0015756 played its tumorigenic properties in HCC by activating FGFR1 and sponging miR-610, and circ_0015756 was expected to be a vital indicator in HCC diagnosis and treatment.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Zhang ◽  
Jing Zhang ◽  
Pengfei Li ◽  
Ting Li ◽  
Zhiqin Zhou ◽  
...  

AbstractMacrophage-derived exosomes (Mφ-Exo) have multidimensional involvement in tumor initiation, progression, and metastasis, but their regulation in hepatocellular carcinoma (HCC) is not fully understood. RBPJ has been implicated in macrophage activation and plasticity. In this study we assess the role of exosomes derived from RBPJ-overexpressed macrophages (RBPJ+/+ Mφ-Exo) in HCC. The circular RNA (circRNA) profiles in RBPJ+/+ Mφ-Exo and THP-1-like macrophages (WT Mφ)-Exo was evaluated using circRNA microarray. CCK-8, Transwell, and flow cytometry analyses were used to evaluate the function of Mφ-Exo-circRNA on HCC cells. Luciferase reporter assays, RNA immunoprecipitation, and Pearson’s correlation analysis were used to confirm interactions. A nude mouse xenograft model was used to further analyze the functional significance of Mφ-Exo-cirRNA in vivo. Our results shown that hsa_circ_0004658 is upregulated in RBPJ+/+ Mφ-Exo compared to WT Mφ-Exo. RBPJ+/+ Mφ-Exo and hsa_circ_0004658 inhibits proliferation and promotes apoptosis in HCC cells, whereas hsa_circ_0004658 knockdown stimulated cell proliferation and migration but restrained apoptosis in vitro and promotes tumor growth in vivo. The effects of RBPJ+/+ Mφ-Exo on HCC cells can be reversed by the hsa_circ_0004658 knockdown. Mechanistic investigations revealed that hsa_circ_0004658 acts as a ceRNA of miR-499b-5p, resulting in the de-repression of JAM3. These results indicate that exosome circRNAs secreted from RBPJ+/+ Mφ inhibits tumor progression through the hsa_circ_0004658/miR-499b-5p/JAM3 pathway and hsa_circ_0004658 may be a diagnostic biomarker and potential target for HCC therapy.


2020 ◽  
Author(s):  
Yanbo Wang ◽  
Fenghai Ren ◽  
Dawei Sun ◽  
Jing Liu ◽  
BenKun Liu ◽  
...  

Abstract BackgroundCircular RNAs (circRNAs) are widely expressed noncoding RNAs, and plays a key role in the biological function of competitive endogenous RNA (ceRNA) network in various human diseases, especially in cancer. However, the regulatory roles of circRNAs in lung adenocarcinoma (LUAD) remains largely unknown. MethodsThe expression profiles of circRNAs in LUAD tissues and adjacent non-tumor tissues were analyzed by Agilent Arraystar Human CircRNA microarray. The level and prognostic values of circKEAP1 in tissues and cancer cell lines were determined by quantitative real-time PCR. Then, the effects of circKEAP1 on tumor growth were investigated by functional experiments in vitro and in vivo. Mechanistically, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between circKEAP1 and miR-141-3p in LUAD.ResultsWe found circKEAP1 was significantly downregulated in LUAD tissues, and repressed tumor growth both in vitro and in vivo. Mechanistically, circKEAP1 competitively binds to miR-141-3p and relive miR-141-3p repression for its target gene KEAP1, which activated the KEAP1/NRF2 signal pathway, and finally suppress the cell proliferation.ConclusionsOur findings suggest that circKEAP1 inhibits LUAD progression through circKEAP1/miR-141-3p/KEAP1 axis and it may serve as a new target for treatment of LUAD patients.


Gut ◽  
2019 ◽  
Vol 69 (7) ◽  
pp. 1309-1321 ◽  
Author(s):  
Wen-Ping Xu ◽  
Jin-Pei Liu ◽  
Ji-Feng Feng ◽  
Chang-Peng Zhu ◽  
Yuan Yang ◽  
...  

ObjectiveAutophagy participates in the progression of hepatocellular carcinoma (HCC) and the resistance of HCC cells to sorafenib. We investigated the feasibility of sensitising HCC cells to sorafenib by modulating miR-541-initiated microRNA-autophagy axis.DesignGain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the malignant properties and autophagy of human HCC cells. Autophagy was quantified by western blotting of LC3, transmission electron microscopy analyses and confocal microscopy scanning of mRFP-GFP-LC3 reporter construct. Luciferase reporter assays were conducted to confirm the targets of miR-541. HCC xenograft tumours were established to analyse the role of miR-541 in sorafenib-induced lethality.ResultsThe expression of miR-541 was downregulated in human HCC tissues and was associated with malignant clinicopathologic phenotypes, recurrence and survival of patients with HCC. miR-541 inhibited the growth, metastasis and autophagy of HCC cells both in vitro and in vivo. Prediction software and luciferase reporter assays identified autophagy-related gene 2A (ATG2A) and Ras-related protein Rab-1B (RAB1B) as the direct targets of miR-541. Consistent with the effects of the miR-541 mimic, inhibition of ATG2A or RAB1B suppressed the malignant phenotypes and autophagy of HCC cells. Furthermore, siATG2A and siRAB1B partially reversed the enhancement of the malignant properties and autophagy in HCC cells mediated by the miR-541 inhibitor. More interestingly, higher miR-541 expression predicted a better response to sorafenib treatment, and the combination of miR-541 and sorafenib further suppressed the growth of HCC cells in vivo compared with the single treatment.ConclusionsDysregulation of miR-541-ATG2A/RAB1B axis plays a critical role in patients’ responses to sorafenib treatment. Manipulation of this axis might benefit survival of patients with HCC, especially in the context of the highly pursued strategies to eliminate drug resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chenghong Wang ◽  
Guicai Zhu ◽  
Miaolin Yu ◽  
Xiufang Mi ◽  
Honghua Qu

Background. Hepatocellular carcinoma (HCC) has been regarded as the fifth most common cancer worldwide with a low prognosis. miR-455 usually played the role of a tumor suppressor in multiple cancers. The aim of this study was to investigate the roles of miR-455 in HCC. Materials and Methods. Cell viability and invasion were measured by CCK8 and Transwell assays. Luciferase reporter assay was performed to verify that miR-455 directly binds to the 3′-noncoding region (UTR) of RAB18 mRNA in Huh7 cells. Results. The expression of miR-455 was lower in HCC tissues and cell lines than in nontumor tissues and normal cell line, and downregulation of miR-455 was connected with worse outcome of HCC patients. miR-455 suppressed cell proliferation in vitro and in vivo, and it inhibited the abilities of cell invasion and EMT in HCC. RAB18 was upregulated in HCC tissues and cell lines, and the expression of RAB18 was regulated by miR-455. RAB18 reversed partial roles of miR-455 on cell viability and invasion in HCC. Conclusion. miR-455 inhibited cell viability and invasion by directly targeting the 3′-UTR of RAB18 mRNA of hepatocellular carcinoma.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Qing Li ◽  
Yong Ni ◽  
Liren Zhang ◽  
Runqiu Jiang ◽  
Jing Xu ◽  
...  

AbstractN6-methyladenosine (m6A), and its reader protein YTHDF1, play a pivotal role in human tumorigenesis by affecting nearly every stage of RNA metabolism. Autophagy activation is one of the ways by which cancer cells survive hypoxia. However, the possible involvement of m6A modification of mRNA in hypoxia-induced autophagy was unexplored in human hepatocellular carcinoma (HCC). In this study, specific variations in YTHDF1 expression were detected in YTHDF1-overexpressing, -knockout, and -knockdown HCC cells, HCC organoids, and HCC patient-derived xenograft (PDX) murine models. YTHDF1 expression and hypoxia-induced autophagy were significantly correlated in vitro; significant overexpression of YTHDF1 in HCC tissues was associated with poor prognosis. Multivariate cox regression analysis identified YTHDF1 expression as an independent prognostic factor in patients with HCC. Multiple HCC models confirmed that YTHDF1 deficiency inhibited HCC autophagy, growth, and metastasis. Luciferase reporter assays and chromatin immunoprecipitation demonstrated that HIF-1α regulated YTHDF1 transcription by directly binding to its promoter region under hypoxia. The results of methylated RNA immunoprecipitation sequencing, proteomics, and polysome profiling indicated that YTHDF1 contributed to the translation of autophagy-related genes ATG2A and ATG14 by binding to m6A-modified ATG2A and ATG14 mRNA, thus facilitating autophagy and autophagy-related malignancy of HCC. Taken together, HIF-1α-induced YTHDF1 expression was associated with hypoxia-induced autophagy and autophagy-related HCC progression via promoting translation of autophagy-related genes ATG2A and ATG14 in a m6A-dependent manner. Our findings suggest that YTHDF1 is a potential prognostic biomarker and therapeutic target for patients with HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Yang ◽  
Yong-ning Zhou ◽  
Miao-miao Zeng ◽  
Nan Zhou ◽  
Bin-sheng Wang ◽  
...  

BackgroundCircular RNAs (circRNAs) are closely associated with the occurrences and progress of gastric cancer (GC). We aimed to delve into the function and pathological mechanism of Circular RNA-0002570 (circ-0002570) in GC progression.MethodsCircRNAs differentially expressed in GC were screened using bioinformatics technology. The expression of circ-0002570 was detected in GC specimens and cells via qRT-PCR, and the prognostic values of circ-0002570 were determined. The functional roles of circ-0002570 on proliferation, migration, and invasion in GC cells were explored in vitro and in vivo. Interaction of circ-0002570, miR-587, and VCAN was confirmed by dual-luciferase reporter assays, Western blotting, and rescue experiments.ResultsCirc-0002570 expression was distinctly increased in GC tissues compared to adjacent normal specimens, and GC patients with higher circ-0002570 expressions displayed a short survival. Functionally, knockdown of circ-0002570 resulted in the inhibition of cell proliferation, migration, and invasion, and suppressed tumor growth in vivo. Mechanistically, miR-587 was sponged by circ-0002570. VCAN expression in NSCLC was directly inhibited by miR-587. Overexpression of circ-0002570 prevented VCAN from miR-587-mediated degradation and thus facilitated GC progression.ConclusionThe circ-0002570-miR-587-VCAN regulatory pathway promoted the progression of GC. Our findings provided potential new targets for the diagnosis and therapy of GC.


Sign in / Sign up

Export Citation Format

Share Document