scholarly journals Identification of the Host Substratome of Leishmania-Secreted Casein Kinase 1 Using a SILAC-Based Quantitative Mass Spectrometry Assay

Author(s):  
Despina Smirlis ◽  
Florent Dingli ◽  
Valentin Sabatet ◽  
Aileen Roth ◽  
Uwe Knippschild ◽  
...  

Leishmaniasis is a severe public health problem, caused by the protozoan Leishmania. This parasite has two developmental forms, extracellular promastigote in the insect vector and intracellular amastigote in the mammalian host where it resides inside the phagolysosome of macrophages. Little is known about the virulence factors that regulate host-pathogen interactions and particularly host signalling subversion. All the proteomes of Leishmania extracellular vesicles identified the presence of Leishmania casein kinase 1 (L-CK1.2), a signalling kinase. L-CK1.2 is essential for parasite survival and thus might be essential for host subversion. To get insights into the functions of L-CK1.2 in the macrophage, the systematic identification of its host substrates is crucial, we thus developed an easy method to identify substrates, combining phosphatase treatment, in vitro kinase assay and Stable Isotope Labelling with Amino acids in Cell (SILAC) culture-based mass spectrometry. Implementing this approach, we identified 225 host substrates as well as a potential novel phosphorylation motif for CK1. We confirmed experimentally the enrichment of our substratome in bona fide L-CK1.2 substrates and showed they were also phosphorylated by human CK1δ. L-CK1.2 substratome is enriched in biological processes such as “viral and symbiotic interaction,” “actin cytoskeleton organisation” and “apoptosis,” which are consistent with the host pathways modified by Leishmania upon infection, suggesting that L-CK1.2 might be the missing link. Overall, our results generate important mechanistic insights into the signalling of host subversion by these parasites and other microbial pathogens adapted for intracellular survival.

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Joachim Kloehn ◽  
Berin A. Boughton ◽  
Eleanor C. Saunders ◽  
Sean O’Callaghan ◽  
Katrina J. Binger ◽  
...  

ABSTRACT Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure. IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.


2019 ◽  
Author(s):  
Zhen Wang ◽  
Junmei Kang ◽  
Shangang Jia ◽  
Tiejun Zhang ◽  
Zhihai Wu ◽  
...  

Abstract Background: Casein kinase 1 (CK1) family members are highly conserved serine/threonine kinase present in most eukaryotes with multiple biological functions. Arabidopsis MUT9-like kinases ( MLKs ) belong to a clade CK1 specific to the plant kingdom and have been implicated collectively in modulating flowering related processes. Three of the four MLKs ( MLK1/2/4 ) have been characterized, however, little is known about MLK3 , the most divergent MLKs. Results: We demonstrated that compared with wild type, mlk3 , a truncated MLK3 , flowered slightly early under long day conditions and ectopic expression of MLK3 rescued the morphological defects of mlk3 , indicating that MLK3 negatively regulates flowering. GA 3 application accelerated flowering of both wild type and mlk3 , suggesting that mlk3 had normal GA response. The recombinant MLK3-GFP was localized in the nucleus exclusively. In vitro kinase assay revealed that the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3ph). Mutation of a conserved catalytic residue (Lysine 175) abolished the kinase activity and resulted in failure to complement the early flowering phenotype of mlk3 . Interestingly, the global level of H3T3 phosphorylation in mlk3 did not differ significantly from wild type, suggesting the redundant roles of MLKs in flowering regulation. The transcriptomic analysis demonstrated that 425 genes significantly altered expression level in mlk3 relative to wild type. The mlk3 mlk4 double mutant generated by crossing mlk3 with mlk4 , a loss-of-function mutant of MLK4 showing late flowering, flowered between the two parental lines, suggesting that MLK3 played an antagonistic role to MLK4 in plant transition to flowering. Conclusions: A serine/threonine kinase encoding gene MLK3 is a casein kinase 1 specific to the plant species and represses flowering slightly. MLK3 located in nucleus catalyzes the phosphorylation of histone H3 at threonine 3 in vitro and an intact lysine residue (K175) is indispensible for the kinase activity. This study sheds new light on the delicate control of flowering by the plant-specific CK1 in Arabidopsis.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 345 ◽  
Author(s):  
Junmei Kang ◽  
Huiting Cui ◽  
Shangang Jia ◽  
Wenwen Liu ◽  
Renjie Yu ◽  
...  

Arabidopsis thaliana MUT9-LIKE KINASES (MLKs), a family of the plant-specific casein kinase 1 (CK1), have been implicated collectively in multiple biological processes including flowering. Three of the four MLKs (MLK1/2/4) have been characterized, however, little is known about MLK3, the most divergent member of MLKs. Here, we demonstrated that disruption of MLK3 transcript in mlk3 caused early flowering with retarded leaf growth under long-day conditions. In vitro kinase assay showed the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3) and mutation of a conserved residue (K146R) abolished the catalytic activity. Ectopic expression of MLK3 but not MLK3(K146R) rescued the morphological defects of mlk3, indicating that an intact MLK3 is critical for maintaining proper flowering time. Transcriptomic analysis revealed that the floral repressor FLOWERING LOCUS C (FLC) was down-regulated significantly in mlk3, suggesting that MLK3 negatively regulates flowering. Hence, MLK3 plays a role in repressing the transition from vegetative to reproductive phase in A. thaliana. This study sheds light on the delicate control of flowering time by A. thaliana CK1 specific to the plant kingdom.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 683 ◽  
Author(s):  
Terry K. Smith ◽  
Frédéric Bringaud ◽  
Derek P. Nolan ◽  
Luisa M. Figueiredo

Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Harshini Weerasinghe ◽  
Hayley E. Bugeja ◽  
Alex Andrianopoulos

AbstractMicrobial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document