scholarly journals Lipoic Acid Metabolism as a Potential Chemotherapeutic Target Against Plasmodium falciparum and Staphylococcus aureus

2021 ◽  
Vol 9 ◽  
Author(s):  
Sun Liu Rei Yan ◽  
Felipe Wakasuqui ◽  
Xiaochen Du ◽  
Matthew R. Groves ◽  
Carsten Wrenger

Lipoic acid (LA) is an organic compound that plays a key role in cellular metabolism. It participates in a posttranslational modification (PTM) named lipoylation, an event that is highly conserved and that occurs in multimeric metabolic enzymes of very distinct microorganisms such as Plasmodium sp. and Staphylococcus aureus, including pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KDH). In this mini review, we revisit the recent literature regarding LA metabolism in Plasmodium sp. and Staphylococcus aureus, by covering the lipoate ligase proteins in both microorganisms, the role of lipoate ligase proteins and insights for possible inhibitors of lipoate ligases.

1996 ◽  
Vol 3 (5) ◽  
pp. 211-217 ◽  
Author(s):  
Zahid Hussain Chohan ◽  
Abdur Rauf

Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity


1989 ◽  
Vol 98 (6) ◽  
pp. 426-428 ◽  
Author(s):  
Itzhak Brook

Aspirates of 72 chronically inflamed maxillary sinuses were processed for aerobic and anaerobic bacteria. Bacterial growth was present in 66 of the 72 specimens (92%). Anaerobic bacteria were isolated in 58 of the 66 culture-positive specimens (88%). Anaerobes only were recovered in 37 cases (56%) and in 21 (32%) they were mixed with aerobic or facultative bacteria. Aerobic or facultative bacteria were present in eight cases (12%). A total of 185 isolates (2.8 per specimen) — 131 (2.0 per specimen) anaerobes and 54 (0.8 per specimen) aerobes or facultatives — were isolated. The predominant anaerobic organisms were anaerobic cocci and Bacteroides sp, and the predominant aerobes or facultatives were Streptococcus sp and Staphylococcus aureus. Twelve of the 27 Bacteroides sp that were tested for β-lactamase (44%) produced the enzyme. These findings indicate the major role of anaerobic organisms in chronic sinusitis.


1981 ◽  
Vol 199 (3) ◽  
pp. 505-511 ◽  
Author(s):  
M J Danson ◽  
G Hale ◽  
R N Perham

Two lipoic acid residues on each dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Escherichia coli were found to undergo oxidoreduction reactions with NAD+ catalysed by the lipoamide dehydrogenase component. It was observed that: (a) 2 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of acetyl-SCoA and NADH; (b) 4 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of NADH; (c) between 1 and 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with acetyl-SCoA plus NADH; (d) 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with pyruvate either before or after many catalytic turnovers through the overall reaction. There was no evidence to support the view that only half of the dihydrolipoic acid residues can be reoxidized by NAD+. However, chemical modification of lipoic acid residues with N-ethylmaleimide was shown to proceed faster than the accompanying loss of enzymic activity under all conditions tested, which indicates that not all the lipoyl groups are essential for activity. The most likely explanation for this result is an enzymic mechanism in which one lipoic acid residue can take over the function of another.


2012 ◽  
Vol 36 (0A) ◽  
pp. 13-19
Author(s):  
احمد محمد تركي

The present study is conducted to in restigate the bacteria Pseudomonas aeruginosa, the impact of ultraviolet on the bacterial isolates under study and the resistance of these isolates to ultraviolet are studied in comparison to two standard isolates ( E . coli and Staphylococcus aureus ) which are considered sensitive to ultraviolet . The natures of the resistance of the isolates, under study, are also being investigated against the different antibiotics. The isolates are subjected to a test to examine their sensitivity to (12) types of antibiotics used routinely in the treatment of various infection of these bacteria. They are (streptomycin , cephalothin ,Gentamycin , cefotaxime ,nitrofurantion ,ampicillin, amoxicillin, rifampin, lincomycin, tetracycline, erythromycin and ciprofloxacin ).The lowest concentration installer ( MIC ) is also testified in accordance with six types of antibiotics (streptomycin, cefotaxime , rifampin , nitrofurantion , Gentamycin , amoxicillin ).The biologic effectiveness of the overlap between the bacterial isolates , under study, is examined against four bacteria (klebseilla pneumonia , Staphylococcus aureus , Enterobacter , Proteus ) The result of using the ultraviolet with different wavelength show the ability of the five local isolates used to resistance of ultraviolet reaching (180 s.) in comparison to the isolates E.coli and staph. aureus in which the ratio of killing is %100 at a time of exposing 40 , 60 sec. respectively. The results indicated that the five local bacterial isolates have high resistance to the most tested antibiotics, It is shouted that all of them have resistance to (erythromycin , tetracycline , lincomycin , Gentamycin ) but they are sensitive towards antibiotic streptomycin . as for the other antibiotics , over can find that the isolates are varied of them for being resisting or sensitive towards them .The results of testing the inhabited effectiveness of the five bacterial isolates towards some other bacterial isolates show the efficiency of the five local isolates in the inhabitation of growth of the five studied bacterial isolates.


1980 ◽  
Vol 187 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Mary C. Ambrose-Griffin ◽  
Michael J. Danson ◽  
William G. Griffin ◽  
Geoffrey Hale ◽  
Richard N. Perham

The catalytic roles of the two reductively acetylatable lipoic acid residues on each lipoate acetyltransferase chain of the pyruvate dehydrogenase complex of Escherichia coli were investigated. Both lipoyl groups are reductively acetylated from pyruvate at the same apparent rate and both can transfer their acetyl groups to CoASH, part-reactions of the overall complex reaction. The complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, conditions that lead to the modification and inactivation of the S-acetyldihydrolipoic acid residues. Modification was found to proceed appreciably faster than the accompanying loss of enzymic activity. The kinetics of the modification were fitted best by supposing that the two lipoyl groups react with the maleimide at different rates, one being modified at approximately 3.5 times the rate of the other. The loss of complex activity took place at a rate approximately equal to that calculated for the modification of the more slowly reacting lipoic acid residue. The simplest interpretation of this result is that only this residue is essential in the overall catalytic mechanism, but an alternative explanation in which one lipoic acid residue can take over the function of another was not ruled out. The kinetics of inactivation could not be reconciled with an obligatory serial interaction between the two lipoic acid residues. Similar experiments with the fluorescent N-[p-(benzimidazol-2-yl)phenyl]maleimide supported these conclusions, although the modification was found to be less specific than with N-ethylmaleimide. The more rapidly modified lipoic acid residue may be involved in the system of intramolecular transacetylation reactions that couple active sites in the lipoate acetyltransferase component.


Author(s):  
Bukola Catherine Akin-Osanaiye ◽  
Oluwatobi Olaife Arowolo ◽  
Ifeyomi Wilfred Olobayotan

Study on the isolation and identifications of bacteria associated with the root of legumes were conducted using Spread Plate Technique. The frequencies of occurrences of the bacteria isolate showed that a total of sixteen (16) bacteria belonging to three genera and four species were isolated from the leguminous plants. Maximum number recovered from sample collected from the root of groundnut was seven (7) followed by Soya bean with five (5) while Pea recorded the least number of four (4). Role of Bacillus subtilis in the soil around the leguminous plant was the highest, which covered about 37.50% of the total isolates. Other bacteria that were also isolated from the soil around the legumes root include Bacillus cereus and Staphylococcus aureus which covered about four (4) each representing 25.0% of the total isolates while Pseudomonas aeruginosa recorded the least value of 12.50%. The bacteria isolated from the root of the legumes were not significantly different (P < 0.05). The bacteria have Nitrogen-fixing potential, having isolated from three leguminous plants which include Soya bean, Groundnut and Pea.


Sign in / Sign up

Export Citation Format

Share Document