scholarly journals Ionic and Electronic Conductivities of Lithium Argyrodite Li6PS5Cl Electrolytes Prepared via Wet Milling and Post-Annealing

2021 ◽  
Vol 9 ◽  
Author(s):  
Jae Min Lee ◽  
Young Seon Park ◽  
Ji-Woong Moon ◽  
Haejin Hwang

Lithium argyrodite Li6PS5Cl powders are synthesized from Li2S, P2S5, and LiCl via wet milling and post-annealing at 500°C for 4 h. Organic solvents such as hexane, heptane, toluene, and xylene are used during the wet milling process. The phase evolution, powder morphology, and electrochemical properties of the wet-milled Li6PS5Cl powders and electrolytes are studied. Compared to dry milling, the processing time is significantly reduced via wet milling. The nature of the solvent does not affect the ionic conductivity significantly; however, the electronic conductivity changes noticeably. The study indicates that xylene and toluene can be used for the wet milling to synthesize Li6PS5Cl electrolyte powder with low electronic and comparable ionic conductivities. The all-solid-state cell with the xylene-processed Li6PS5Cl electrolyte exhibits the highest discharge capacity of 192.4 mAh·g−1 and a Coulombic efficiency of 81.3% for the first discharge cycle.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


2016 ◽  
Vol 697 ◽  
pp. 327-330 ◽  
Author(s):  
Ke Shan ◽  
Xing Min Guo ◽  
Feng Rui Zhai ◽  
Zhong Zhou Yi

Y0.06Sr0.94Ti0.6Fe0.4O3-δ-YSZ composites were prepared by mixing Y, Fe co-doped SrTiO3 (Y0.06Sr0.94Ti0.6Fe0.4O3-δ known as YSTF) and 8 mol% Y2O3 stabilized ZrO2 (YSZ) in different weight fractions. The phase stability, phase compatibility, microstructure and mixed ionic-electronic conductivity of composites were investigated. Phase analysis by XRD showed no clearly detectable secondary phases. The electrical conductivity measurement on the YSTF-YSZ composites showed a drastic decrease in total electrical and ionic conductivities when more than 10 wt% of YSZ was used in the composites. The total electrical conductivity was 0.102 S/cm for Y0.06Sr0.94Ti0.6Fe0.4O3-δ and 0.043 S/cm for YSTF-20YSZ at 700 oC, respectively. The value at 700 oC is approximately 2.4 times higher than that of YSTF-20YSZ. The ionic conductivity of Y0.06Sr0.94Ti0.8Fe0.2O3-δ varies from 0.015S/cm at 700 oC to 0.02 S/cm at 800 oC, respectively. The value at 800°C is approximately 12.5 times higher than YSTF-20YSZ. The ion transference numbers of YSTF-YSZ composites vary from 0.14 to 0.28 at 800 °C.


2013 ◽  
Vol 27 (22) ◽  
pp. 1350156 ◽  
Author(s):  
R. J. ZHU ◽  
Y. REN ◽  
L. Q. GENG ◽  
T. CHEN ◽  
L. X. LI ◽  
...  

Amorphous V 2 O 5, LiPON and Li 2 Mn 2 O 4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge–discharge characteristic in the voltage range of 0.3–3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.


2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.


2016 ◽  
Vol 95 ◽  
pp. 122-129 ◽  
Author(s):  
Róbert Lehocký ◽  
Daniel Pěček ◽  
František Štěpánek

2018 ◽  
Vol Volume 12 ◽  
pp. 1567-1580 ◽  
Author(s):  
Csaba Bartos ◽  
Orsolya Jójárt-Laczkovich ◽  
Gabor Katona ◽  
Mária Budai-Szűcs ◽  
Rita Ambrus ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 2140 ◽  
Author(s):  
Reddyprakash Maddipatla ◽  
Chadrasekhar Loka ◽  
Woo Choi ◽  
Kee-Sun Lee

Si/C nanocomposite was successfully prepared by a scalable approach through high-energy mechanical milling and carbonization process. The crystalline structure of the milled powders was studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Morphology of the milled powders was investigated by Field-emission scanning electron microscopy (FE-SEM). The effects of milling time on crystalline size, crystal structure and microstructure, and the electrochemical properties of the nanocomposite powders were studied. The nanocomposite showed high reversible capacity of ~1658 mAh/g with an initial cycle coulombic efficiency of ~77.5%. The significant improvement in cyclability and the discharge capacity was mainly ascribed to the silicon particle size reduction and carbon layer formation over silicon for good electronic conductivity. As the prepared nanocomposite Si/C electrode exhibits remarkable electrochemical performance, it is potentially applied as a high capacity anode material in the lithium-ion secondary batteries.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1981
Author(s):  
Rafael Del Olmo ◽  
Nerea Casado ◽  
Jorge L. Olmedo-Martínez ◽  
Xiaoen Wang ◽  
Maria Forsyth

Mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) are postulated to be the next generation materials in energy storage and electronic devices. Although many studies have aimed to enhance the electronic conductivity and mechanical properties of these materials, there has been little focus on ionic conductivity. In this work, blends based on PEDOT stabilized by the polyelectrolyte poly(diallyldimethylammonium) (PolyDADMA X) are reported, where the X anion is either chloride (Cl), bis(fluorosulfonyl)imide (FSI), bis(trifluoromethylsulfonyl)imide (TFSI), triflate (CF3SO3) or tosylate (Tos). Electronic conductivity values of 0.6 S cm−1 were achieved in films of PEDOT:PolyDADMA FSI (without any post-treatment), with an ionic conductivity of 5 × 10−6 S cm−1 at 70 °C. Organic ionic plastic crystals (OIPCs) based on the cation N-ethyl-N-methylpyrrolidinium (C2mpyr+) with similar anions were added to synergistically enhance both electronic and ionic conductivities. PEDOT:PolyDADMA X / [C2mpyr][X] composites (80/20 wt%) resulted in higher ionic conductivity values (e.g., 2 × 10−5 S cm−1 at 70 °C for PEDOT:PolyDADMA FSI/[C2mpyr][FSI]) and improved electrochemical performance versus the neat PEDOT:PolyDADMA X with no OIPC. Herein, new materials are presented and discussed including new PEDOT:PolyDADMA and organic ionic plastic crystal blends highlighting their promising properties for energy storage applications.


2020 ◽  
Vol 64 (4) ◽  
pp. 401-420
Author(s):  
Viktor Fülöp ◽  
Géza Jakab ◽  
Bence Tóth ◽  
Emese Balogh ◽  
István Antal

The main objective of this work was to show the potential of the optimization of top-down wet planetary bead milling process parameters (milling speed, process time and size of the milling medium) by Design Of Experiments (DOE) approach for the development of albendazole (ABZ) containing nanosuspension with improved dissolution. In addition, the influence of process parameters (capacity of milling container, applied volume of milling beads, size of the milling medium, milling speed, milling time) on ABZ polymorphic transition has also been investigated. The optimized, milled formula yielded ~ 145.39 times reduction in mean particle size (182.200 ± 1.3130 nm) compared to unmilled dispersion, which demonstrated 13.50 times gain in mean dissolution rate value compared to the unmilled dispersion in medium at pH = 1.2. No lag time values were observed in the dissolution kinetics of the nanosuspension in comparison with the unmilled samples. Moreover, maximal mean solubility value was also improved by 1.45 times compared to the unmilled suspension, in medium at pH = 6.8, supporting the significance of the Ostwald-Freundlich equation. Diffraction pattern comparisons have indicated a polymorphic transition of albendazole to Form II, which was more pronounced in smaller container at high milling speed values and prolonged operations.


Sign in / Sign up

Export Citation Format

Share Document