scholarly journals Research Progress of Gas Sensing Performance of 2D Hexagonal WO3

2021 ◽  
Vol 9 ◽  
Author(s):  
Yueqi Li ◽  
Qin Zhou ◽  
Shoubing Ding ◽  
Zhimin Wu

Metal oxide semiconductor gas sensing materials have attracted great research interest in the gas sensor field due to their outstanding physical and chemical properties, low cost, and easy preparation. Among them, two-dimensional hexagonal tungsten trioxide (2D h-WO3) is especially interesting because of its high sensitivity and selectivity to some gases. We firstly introduce the characteristics of 2D h-WO3 gas sensing materials and discuss the effects of microstructure, oxygen vacancy, and doping modification on the gas sensing properties of 2D h-WO3 mainly. Finally, we explore the application of 2D h-WO3 gas sensing materials and propose some research directions.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1926
Author(s):  
Gaojie Li ◽  
Wenshuang Zhang ◽  
Na Luo ◽  
Zhenggang Xue ◽  
Qingmin Hu ◽  
...  

In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Muhammad Arif Khan ◽  
Samsudi Sakrani ◽  
Syahida Suhaima ◽  
Yussof Wahab ◽  
Rosnita Muhammad

One dimensional metal oxide semiconductor nanowires of copper (I) oxide (Cu2O), zinc oxide (ZnO), and their heterojunction nanowires possess remarkable physical and chemical properties. ZnO and Cu2O areattractive because the metals are abundant on earth, inexpensive, nontoxic.Moreover, these oxides have useful optical and electrical properties suitable for a wide variety of electrical devices, because their electrical conduction can be predictably controlled by doping. We here restrict the disscussion using a Hot Tube Vacuum Thermal Evaporation. The NWs in these devices will be studied by physical vapor deposition known as vapor-liquid-solid (VLS). Therefore, we explore conventional methods, particularly the VLS of growing ZnO and Cu2O nanowires which are assisted by the catalyst.  In this short review, we report the individual and combined (Cu2O/ZnO) junction nanowires by PVD method.  The main advantages of these composite nanowires are the natural p-n characteristics, the broad light absorption, the high sensitivity to humidity changes, and the fast dynamic response. The combination of all characteristics offered by Cu2O/ZnO nanowires can enable the fabrication of diverse sensing devices, and photovoltaic solar cells.


2020 ◽  
Vol 143 ◽  
pp. 02027
Author(s):  
Zhao Bin ◽  
Cheng Yongqiang ◽  
Guo Cuilian ◽  
Liu Maoke ◽  
Yao Puyu ◽  
...  

Microplastics are attracting more and more attention as a new type of pollutant in the ecological environment. Microplastics are difficult to degrade because of their unique physical and chemical properties. Some microplastics adsorbed toxic chemicals (e.g. heavy metals or organic pollutants) will cause a series of toxicological effects in organisms. This paper summarized the research progress in microplastics from the aspects of the types, distribution, detection and the toxicological effects. In addition, future research directions were also proposed and discussed.


2018 ◽  
Vol 8 (10) ◽  
pp. 1822 ◽  
Author(s):  
Yufei Ma

Quartz-enhanced photoacoustic spectroscopy (QEPAS) is an improvement of the conventional microphone-based photoacoustic spectroscopy. In the QEPAS technique, a commercially available millimeter-sized piezoelectric element quartz tuning fork (QTF) is used as an acoustic wave transducer. With the merits of high sensitivity and selectivity, low cost, compactness, and a large dynamic range, QEPAS sensors have been applied widely in gas detection. In this review, recent developments in state-of-the-art QEPAS-based trace gas sensing technique over the past five years are summarized and discussed. The prospect of QEPAS-based gas sensing is also presented.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mulayam Singh Gaur ◽  
Rajni Yadav ◽  
Mamta Kushwah ◽  
Anna Nikolaevna Berlina

Purpose This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. Design/methodology/approach Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples. Findings This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples. Originality/value This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.


2004 ◽  
pp. 79-90
Author(s):  
Vesna Vratusa

Efficient nursery production of woody plants, as well as the level of their successful application in urban green spaces, greatly depends upon properties of substrates in which these individuals grow, develop and endure. Furthermore, quality of substrate does not only affect the quality of future product (plant individual or green space), but distinctly determines its price. This element, extremely significant for all countries in transition, thus Serbia as well, commands finding ways of making qualitative, but least expensive substrate. The most logical solution is to use mixtures/substrates of precisely defined properties, composed of domestic components. Results presented in this paper imply that it is possible to create precisely such standard mixtures from domestic resources at relatively low cost, adjusted to needs of particular species, which would ultimately lead to successful, non-expensive nursery production and application of produced stock, both on domestic and foreign markets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ghazanfar Abbas ◽  
Muhammad Ibrahim ◽  
Ali Ahmad ◽  
Muhammad Azeem ◽  
Kashif Elahi

Natural zeolites are commonly described as macromolecular sieves. Zeolite networks are very trendy chemical networks due to their low-cost implementation. Sodalite network is one of the most studied types of zeolite networks. It helps in the removal of greenhouse gases. To study this rich network, we use an authentic mathematical tool known as M-polynomials of the topological index and show some physical and chemical properties in numerical form, and to understand the structure deeply, we compare different legitimate M-polynomials of topological indices, concluding in the form of graphical comparisons.


2007 ◽  
Vol 1038 ◽  
Author(s):  
F. P. Doty ◽  
Douglas McGregor ◽  
Mark Harrison ◽  
Kip Findley ◽  
Raulf Polichar ◽  
...  

AbstractCerium and lanthanum tribromides and trichlorides form isomorphous alloys with the hexagonal UCl3 type structure, and have been shown to exhibit high luminosity and proportional response, making them attractive alternatives for room temperature gamma ray spectroscopy. However the fundamental physical and chemical properties of this system introduce challenges for material processing, scale-up, and detector fabrication. In particular, low fracture stress and perfect cleavage along prismatic planes cause profuse cracking during and after crystal growth, impeding efforts to scale this system for production of low cost, large diameter spectrometers. We have reported progress on basic materials science of the lanthanide halides. Studies to date have included thermomechanical and thermogravimetric analyses, hygroscopicity, yield strength, and fracture toughness. The observed mechanical properties pose challenging problems for material production and post processing; therefore, understanding mechanical behavior is key to fabricating large single crystals, and engineering of robust detectors and systems. Analysis of the symmetry and crystal structure of this system, including identification of densely-packed and electrically neutral planes with slip and cleavage, and comparison of relative formation and propagation energies for proposed slip systems, suggest possible mechanisms for deformation and crack initiation under stress. The low c/a ratio and low symmetry relative to traditional scintillators indicate limited and highly anisotropic plasticity cause redistribution of residual process stress to cleavage planes, initiating fracture. Ongoing work to develop fracture resistant lanthanide halides is presented.


Sign in / Sign up

Export Citation Format

Share Document