scholarly journals Alterations of Gastric Microbiota in Gastric Cancer and Precancerous Stages

Author(s):  
Xinmei Zhang ◽  
Chao Li ◽  
Weijun Cao ◽  
Zhenyu Zhang

ObjectiveMicrobial infections have been shown to contribute to gastric carcinogenesis, the knowledge of gastric microbiota alteration in this process may provide help in early diagnosis of gastric cancer. The aim of this study was to characterize the microbial changes and identify taxonomic biomarkers across stages of gastric carcinogenesis.MethodsThe gastric microbiota was investigated by 16S rRNA gene analysis in gastric mucosal specimens from 47 patients including superficial gastritis (SG), atrophic gastritis (AG), gastric intraepithelial neoplasia (GIN), and gastric cancer (GC). Differences in microbial composition across the disease stages, especially in GIN and GC were assessed using linear discriminant analysis effect size.ResultsThere was no gradual changing trend in the richness or diversity of the gastric microbiota across stages of gastric carcinogenesis. The relative abundance of dominant taxa at phylum and genus levels didn’t show a gradual shift pattern, and the only four taxa that continuously enriched from SG to GC were Slackia, Selenomonas, Bergeyella, and Capnocytophaga, all of which were oral bacteria. The most representative taxa which were enriched in GC patients were oral bacteria including Parvimonas, Eikenella and Prevotella-2, and environmental bacteria including Kroppenstedtia, Lentibacillus, and Oceanobacillus. The gastric microbiota in GIN patients were characterized by enrichment of intestinal commensals including Romboutsia, Fusicatenibacter, Prevotellaceae-Ga6A1-group, and Intestinimonas. Gastric cardia cancer and non-cardia cancer patients had significantly different microbiota profiles characterized by a higher abundance of Helicobacter in the cardia cancer patients.ConclusionsOur results provide insights on potential taxonomic biomarkers for gastric cancer and precancerous stages, and suggest that gastric microbiota might play different roles in the carcinogenesis of cardia cancer and non-cardia cancer.

Author(s):  
Dehua Liu ◽  
Si Chen ◽  
Yawen Gou ◽  
Wenyong Yu ◽  
Hangcheng Zhou ◽  
...  

BackgroundGastric microbiota may be involved in gastric cancer. The relationship between gastrointestinal microbes and the risk of gastric cancer is unclear. This study aimed to explore the gastric and intestinal bacteria associated with gastritis and gastric precancerous lesions. We conducted a case-control study by performing 16S rRNA gene analysis of gastric biopsies, juices, and stool samples from 148 cases with gastritis or gastric precancerous lesions from Anhui and neighboring provinces, China. And we validated our findings in public datasets.ResultsAnalysis of microbial sequences revealed decreased bacterial alpha diversity in gastric bacteria during the progression of gastritis. Helicobacter pylori was the main contributor to the decreased microbial composition and diversity in the gastric mucosa and had little influence on the microbiota of gastric juice and feces. The gastric mucosal genera Gemella, Veillonella, Streptococcus, Actinobacillus, and Hemophilus had the higher degree of centrality across the progression of gastric precancerous lesions. And Acinetobacter may contribute to the occurrence of intraepithelial neoplasia. In addition, the microbial model of H. pylori-positive gastric biopsies and feces showed value in the prediction of gastric precancerous lesions.ConclusionsThis study identified associations between gastric precancerous lesions and gastric microbiota, as well as the changes in intestinal microbiota, and explored their values in the prediction of gastric precancerous lesions.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 504 ◽  
Author(s):  
Boldbaatar Gantuya ◽  
Hashem B. El-Serag ◽  
Takashi Matsumoto ◽  
Nadim J. Ajami ◽  
Khasag Oyuntsetseg ◽  
...  

Helicobacter pylori (H. pylori) related chronic gastritis is a well-known major etiological factor for gastric cancer development. However, H. pylori-negative gastritis (HpN) is not well described. We aimed to examine gastric mucosal microbiota in HpN compared to H. pylori-positive gastritis (HpP) and H. pylori-negative non-gastritis group (control). Here, we studied 11 subjects with HpN, 40 with HpP and 24 controls. We performed endoscopy with six gastric biopsies. Comparison groups were defined based on strict histological criteria for the disease and H. pylori diagnosis. We used 16S rRNA gene amplicon sequencing to profile the gastric microbiota according to comparison groups. These results demonstrate that the HpP group had significantly lower bacterial richness by the operational taxonomic unit (OTU) counts, and Shannon and Simpson indices as compared to HpN or controls. The linear discriminant analysis effect size analysis showed the enrichment of Firmicutes, Fusobacteria, Bacteroidetes and Actinobacteria at phylum level in the HpN group. In the age-adjusted multivariate analysis, Streptococcus sp. and Haemophilus parainfluenzae were at a significantly increased risk for HpN (odds ratio 18.9 and 12.3, respectively) based on abundance. Treponema sp. was uniquely found in HpN based on occurrence. In this paper, we conclude that Streptococcus sp., Haemophilus parainfluenzae and Treponema sp. are candidate pathogenic bacterial species for HpN. These results if confirmed may have important clinical implications.


Gut ◽  
2017 ◽  
Vol 67 (2) ◽  
pp. 226-236 ◽  
Author(s):  
Rui M Ferreira ◽  
Joana Pereira-Marques ◽  
Ines Pinto-Ribeiro ◽  
Jose L Costa ◽  
Fatima Carneiro ◽  
...  

ObjectiveGastric carcinoma development is triggered by Helicobacter pylori. Chronic H. pylori infection leads to reduced acid secretion, which may allow the growth of a different gastric bacterial community. This change in the microbiome may increase aggression to the gastric mucosa and contribute to malignancy. Our aim was to evaluate the composition of the gastric microbiota in chronic gastritis and in gastric carcinoma.DesignThe gastric microbiota was retrospectively investigated in 54 patients with gastric carcinoma and 81 patients with chronic gastritis by 16S rRNA gene profiling, using next-generation sequencing. Differences in microbial composition of the two patient groups were assessed using linear discriminant analysis effect size. Associations between the most relevant taxa and clinical diagnosis were validated by real-time quantitative PCR. Predictive functional profiling of microbial communities was obtained with PICRUSt.ResultsThe gastric carcinoma microbiota was characterised by reduced microbial diversity, by decreased abundance of Helicobacter and by the enrichment of other bacterial genera, mostly represented by intestinal commensals. The combination of these taxa into a microbial dysbiosis index revealed that dysbiosis has excellent capacity to discriminate between gastritis and gastric carcinoma. Analysis of the functional features of the microbiota was compatible with the presence of a nitrosating microbial community in carcinoma. The major observations were confirmed in validation cohorts from different geographic origins.ConclusionsDetailed analysis of the gastric microbiota revealed for the first time that patients with gastric carcinoma exhibit a dysbiotic microbial community with genotoxic potential, which is distinct from that of patients with chronic gastritis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Madhawa Neranjan Gunathilake ◽  
Jeonghee Lee ◽  
Il Ju Choi ◽  
Young-Il Kim ◽  
Yongju Ahn ◽  
...  

Abstract The human gut hosts a diverse community of bacteria referred to as the gut microbiome. We investigated the association between the relative abundance of gastric microbiota and gastric cancer (GC) risk in a Korean population. The study participants included 268 GC patients and 288 controls. DNA was extracted from gastric biopsies, and 16S rRNA gene analysis was performed. Unconditional logistic regression models were used to observe the associations. Of the participants, those who had the highest level (highest tertile) of relative Helicobacter pylori and Propionibacterium acnes abundances showed a significantly higher risk for GC after adjusting for potential confounding variables (odds ratio (OR) = 1.86, 95% confidence interval (CI) = 1.17–2.97, p for trend = 0.017 and OR = 4.77, 95% CI = 2.94–7.74, p for trend <0.001, respectively). Subjects who carried Prevotella copri had a significantly higher risk of GC than noncarriers (OR = 2.54, 95% CI = 1.42–4.55, p for trend = 0.002). There was a lower risk of GC in subjects carrying Lactococcus lactis than in noncarriers (OR = 0.21, 95% CI = 0.10–0.44, p for trend <0.001). H. pylori, P. acnes and P. copri are strong risk factors, whereas L. lactis is a protective factor, for GC development in Koreans. Further microbiome studies are warranted to verify the findings of the current study.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Daofeng Dai ◽  
Yan Yang ◽  
Jieqing Yu ◽  
Tianfeng Dang ◽  
Wenjing Qin ◽  
...  

AbstractThe development and progression of gastric cancer (GC) is greatly influenced by gastric microbiota and their metabolites. Here, we characterized the gastric microbiome and metabolome profiles of 37 GC tumor tissues and matched non-tumor tissues using 16s rRNA gene sequencing and ultrahigh performance liquid chromatography tandem mass spectrometry, respectively. Microbial diversity and richness were higher in GC tumor tissues than in non-tumor tissues. The abundance of Helicobacter was increased in non-tumor tissues, while the abundance of Lactobacillus, Streptococcus, Bacteroides, Prevotella, and 6 additional genera was increased in the tumor tissues. The untargeted metabolome analysis revealed 150 discriminative metabolites, among which the relative abundance of the amino acids, carbohydrates and carbohydrate conjugates, glycerophospholipids, and nucleosides was higher in tumor tissues compared to non-tumor tissues. The targeted metabolome analysis further demonstrated that the combination of 1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate could serve as a robust biomarker for distinction between GC tumors and non-tumor tissues. Correlation analysis revealed that Helicobacter and Lactobacillus were negatively and positively correlated with the majority of differential metabolites in the classes of amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids, respectively, suggesting that Helicobacter and Lactobacillus might play a role in degradation and synthesis of the majority of differential metabolites in these classes, respectively. Acinetobacter, Comamonas, Faecalibacterium, Sphingomonas, and Streptococcus were also significantly correlated with many differential amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids. In conclusion, the differences in metabolome profiles between GC tumor and matched non-tumor tissues may be partly due to the collective activities of Helicobacter, Lactobacillus, and other bacteria, which eventually affects GC carcinogenesis and progression.


2015 ◽  
Vol 81 (16) ◽  
pp. 5471-5476 ◽  
Author(s):  
Taichi Inui ◽  
Lauren C. Walker ◽  
Michael W. J. Dodds ◽  
A. Bryan Hanley

ABSTRACTCarbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to growin vitrobiofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higherin vitrowhen grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measuredex vivoactivities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement within vitroobservation. A similar pattern was observed in GH activity profiles betweenin vitroandex vivodata. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.


2013 ◽  
Vol 144 (5) ◽  
pp. S-505 ◽  
Author(s):  
Nayoung Kim ◽  
Yoon Jin Choi ◽  
Ji Yeon Kim ◽  
Ryoung Hee Nam ◽  
Mi Ji Choi ◽  
...  

2021 ◽  
Author(s):  
Karolina Kaźmierczak-Siedlecka ◽  
Agnieszka Daca ◽  
Giandomenico Roviello ◽  
Martina Catalano ◽  
Karol Połom

AbstractCurrently, gastric cancer is one of the leading death-related cancer globally. The etiopathogenesis of gastric cancer is multifactorial and includes among others dysbiotic alterations of gastric microbiota. Molecular techniques revealed that stomach is not a sterile organ and it is resides with ecosystem of microbes. Due to the fact that the role of Helicobacter pylori infection in development of gastric cancer is established and well-studied, this paper is mainly focused on the role of other bacterial as well as viral and fungal gut microbiota imbalance in gastric carcinogenesis. Notably, not only the composition of gastric microbiota may play an important role in development of gastric cancer, but also its activity. Microbial metabolites, such as short-chain fatty acids, polyamines, N-nitroso compounds, and lactate, may significantly affect gastric carcinogenesis. Therefore, this paper discussed aforementioned aspects with the interdisciplinary insights (regarding also immunological point of view) into the association between gut microbiome and gastric carcinogenesis based on up-to-date studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257681
Author(s):  
Veerle Van Hoeck ◽  
Ingrid Somers ◽  
Anas Abdelqader ◽  
Alexandra L. Wealleans ◽  
Sandy Van de Craen ◽  
...  

Anti-nutritional compounds such as non-starch polysaccharides (NSP) are present in viscous cereals used in feed for poultry. Therefore, exogenous carbohydrases are commonly added to monogastric feed to degrade these NSP. Our hypothesis is that xylanase not only improves laying hen performance and digestibility, but also induces a significant shift in microbial composition within the intestinal tract and thereby might exert a prebiotic effect. In this context, a better understanding on whether and how the chicken gut microbial population can be modulated by xylanase is required. To do so, the effects of dietary supplementation of xylanase on performance, apparent total tract digestibility (ATTD) and cecal microbiome in laying hens were evaluated in the present study. A total of 96 HiSex laying hens were used in this experiment (3 diets and 16 replicates of 2 hens). Xylanase was added to the diets at concentrations of 0, 45,000 (15 g/t XygestTM HT) and 90,000 U/kg (30 g/t Xygest HT). The diets were based on wheat (~55%), soybean and sunflower meal. The lowest dosage, 45,000 U/kg, significantly increased average egg weight and improved feed efficiency compared to the control treatment (P<0.05). Egg quality parameters were significantly improved in the experiment in response to the xylanase addition. For example, during the last 28 days of the trial, birds receiving the 45,000 U/kg and the 90,000 U/kg treatments exhibited an increase in Haugh units and albumin heights (P<0.05). Compared with the control, the ATTD of organic matter and crude protein were drastically improved in the 45,000 U/kg treatment group (P<0.05). Furthermore, gross energy and the ATTD of crude fat were improved significantly for birds fed 90,000 U/kg group compared to the control. Importantly, 16S rRNA gene analysis revealed that xylanase at 45,000 U/kg dosage can exert a change in the cecal microbiome. A significant increase in beneficial bacteria (Bacilli class; Enterococcaceae and Lactobacillales orders; Merdibacter, Enterococcus and Nocardiopsis genera; Enterococcus casseliflavus species) was documented when adding 45,000 U/kg xylanase to the diet of laying hens. In conclusion, dietary supplementation of xylanase 45,000 U/kg significantly improved laying hen performance and digestibility. Furthermore, microbiome data suggest that xylanase modulates the laying hen bacterial population beneficially, thus potentially exerting a prebiotic effect.


Sign in / Sign up

Export Citation Format

Share Document