scholarly journals One Year of SARS-CoV-2: Genomic Characterization of COVID-19 Outbreak in Qatar

Author(s):  
Fatiha M. Benslimane ◽  
Hebah A. Al Khatib ◽  
Ola Al-Jamal ◽  
Dana Albatesh ◽  
Sonia Boughattas ◽  
...  

Qatar, a country with a strong health system and a diverse population consisting mainly of expatriate residents, has experienced two large waves of COVID-19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population’s genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.

2021 ◽  
Author(s):  
Fatiha M. Benslimane ◽  
Hebah A. AlKhatib ◽  
Ola Al-Jamal ◽  
Dana Albatesh ◽  
Sonia Boughattas ◽  
...  

The state of Qatar has emerged as a major transit hub connecting all parts of the globe, making it as a hotspot for infectious disease introduction and providing an ideal setting to monitor the emergence and spread of variants. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population's genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number in the mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. This raises the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor SARS-CoV-2 profile and re-emergence in Qatar.


2021 ◽  
Vol 13 (4) ◽  
pp. 2289
Author(s):  
Mateja Janeš ◽  
Minja Zorc ◽  
Maja Ferenčaković ◽  
Ino Curik ◽  
Peter Dovč ◽  
...  

Balkan Livestock Guardian Dogs (LGD) were bred to help protect sheep flocks in sparsely populated, remote mountainous areas in the Balkans. The aim of this study was genomic characterization (107,403 autosomal SNPs) of the three LGD breeds from the Balkans (Karst Shepherd, Sharplanina Dog, and Tornjak). Our analyses were performed on 44 dogs representing three Balkan LGD breeds, as well as on 79 publicly available genotypes representing eight other LGD breeds, 70 individuals representing seven popular breeds, and 18 gray wolves. The results of multivariate, phylogenetic, clustering (STRUCTURE), and FST differentiation analyses showed that the three Balkan LGD breeds are genetically distinct populations. While the Sharplanina Dog and Tornjak are closely related to other LGD breeds, the Karst Shepherd is a slightly genetically distinct population with estimated influence from German Shepard (Treemix analysis). Estimated genomic diversity was high with low inbreeding in Sharplanina Dog (Ho = 0.315, He = 0.315, and FROH>2Mb = 0.020) and Tornjak (Ho = 0.301, He = 0.301, and FROH>2Mb = 0.033) breeds. Low diversity and high inbreeding were estimated in Karst Shepherds (Ho = 0.241, He = 0.222, and FROH>2Mb = 0.087), indicating the need for proper diversity management. The obtained results will help in the conservation management of Balkan LGD dogs as an essential part of the specific grazing biocultural system and its sustainable maintenance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Myat Htut Nyunt ◽  
Hnin Ohnmar Soe ◽  
Kay Thi Aye ◽  
Wah Wah Aung ◽  
Yi Yi Kyaw ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigated the mutational and phylogenetic analysis of 30 whole-genome sequences for the virus's genomic characteristics in the specimens collected in the early phase of the pandemic (March–June, 2020) and the sudden surge of local transmission (August–September, 2020). The four samples in the early phase of infection were B.6 lineage and located within a clade of the samples collected at the same time in Singapore and Malaysia, while five returnees by rescue flights showed the lineage B. 1.36.1 (three from India), B.1.1 (one from India) and B.1.80 (one from China). However, there was no evidence of local spread from these returnees. Further, all 19 whole-genome sequences collected in the sudden surge of local transmission showed lineage B.1.36. The surge of the second wave on SARS-CoV-2 infection was linked to the single-introduction of a variant (B.1.36) that may result from the strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.


2021 ◽  
Vol 9 (8) ◽  
pp. 1612
Author(s):  
Werner Ruppitsch ◽  
Andjela Nisic ◽  
Patrick Hyden ◽  
Adriana Cabal ◽  
Jasmin Sucher ◽  
...  

In many dairy products, Leuconostoc spp. is a natural part of non-starter lactic acid bacteria (NSLAB) accounting for flavor development. However, data on the genomic diversity of Leuconostoc spp. isolates obtained from cheese are still scarce. The focus of this study was the genomic characterization of Leuconostoc spp. obtained from different traditional Montenegrin brine cheeses with the aim to explore their diversity and provide genetic information as a basis for the selection of strains for future cheese production. In 2019, sixteen Leuconostoc spp. isolates were obtained from white brine cheeses from nine different producers located in three municipalities in the northern region of Montenegro. All isolates were identified as Ln. mesenteroides. Classical multilocus sequence tying (MLST) and core genome (cg) MLST revealed a high diversity of the Montenegrin Ln. mesenteroides cheese isolates. All isolates carried genes of the bacteriocin biosynthetic gene clusters, eight out of 16 strains carried the citCDEFG operon, 14 carried butA, and all 16 isolates carried alsS and ilv, genes involved in forming important aromas and flavor compounds. Safety evaluation indicated that isolates carried no pathogenic factors and no virulence factors. In conclusion, Ln. mesenteroides isolates from Montenegrin traditional cheeses displayed a high genetic diversity and were unrelated to strains deposited in GenBank.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009315
Author(s):  
Marylee L. Kapuscinski ◽  
Nicholas A. Bergren ◽  
Brandy J. Russell ◽  
Justin S. Lee ◽  
Erin M. Borland ◽  
...  

Bunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that include important human, veterinary, and plant pathogens. The rapid characterization of known and new emerging pathogens depends on the availability of comprehensive reference sequence databases that can be used to match unknowns, infer evolutionary and pathogenic potential, and make response decisions in an evidence-based manner. In this study, we determined the coding-complete genome sequences of 99 bunyaviruses in the Centers for Disease Control and Prevention’s Arbovirus Reference Collection, focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae), and phleboviruses (Phenuiviridae) that either completely or partially lacked genome sequences. These viruses had been collected over 66 years from 27 countries from vertebrates and arthropods representing 37 genera. Many of the viruses had been characterized serologically and through experimental infection of animals but were isolated in the pre-sequencing era. We took advantage of our unusually large sample size to systematically evaluate genomic characteristics of these viruses, including reassortment, and co-infection. We corroborated our findings using several independent molecular and virologic approaches, including Sanger sequencing of 197 genome segments, and plaque isolation of viruses from putative co-infected virus stocks. This study contributes to the described genetic diversity of bunyaviruses and will enhance the capacity to characterize emerging human pathogenic bunyaviruses.


2011 ◽  
Vol 92 (8) ◽  
pp. 1888-1898 ◽  
Author(s):  
Herman Tse ◽  
Wan-Mui Chan ◽  
Hoi-Wah Tsoi ◽  
Rachel Y. Y. Fan ◽  
Candy C. Y. Lau ◽  
...  

The genus Mamastrovirus belongs to the family Astroviridae and consists of at least six members infecting different mammalian hosts, including humans, cattle and pigs. In recent years, novel astroviruses have been identified in other mammalian species like roe deer, bats and sea lions. While the bovine astrovirus was one of the earliest astroviruses to have been studied, no further research has been performed recently and its genome sequence remains uncharacterized. In this report, we describe the detection and genomic characterization of astroviruses in bovine faecal specimens obtained in Hong Kong. Five of 209 specimens were found to be positive for astrovirus by RT-PCR. Two of the positive specimens were found to contain sequences from two different astrovirus strains. Complete genome sequences of approximately 6.3 kb in length were obtained for four strains, which showed similar organization of the genome compared to other astroviruses. Phylogenetic analysis confirmed their identities as members of the genus Mamastrovirus, and showed them to be most closely related to the Capreolus capreolus astrovirus. Based on the pairwise genetic distances among their full-length ORF2 sequences, these bovine astroviruses may be assigned into at least three different genotype species. Sequence analysis revealed evidence of potential recombination in ORF2. In summary, we report the first genome sequences of bovine astroviruses and clearly establish the species status of the virus. Additionally, our study is among the first to report co-infection by different astrovirus genotypes in the same host, which is an essential step for recombination to occur.


2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Angela B. Muñoz ◽  
Johanna Stepanian ◽  
Carmen Acosta ◽  
Juan S. Solano-Gutierrez ◽  
Filipa F. Vale ◽  
...  

ABSTRACT Here, we present the draft genome sequences of 29 Colombian Helicobacter pylori strains. These strains were isolated in Bogotá, Colombia, from patients diagnosed with chronic gastritis. The genomic characterization of these strains will provide more information on the genetic composition of H. pylori strains from Colombia.


Author(s):  
Ángela María Ruiz-Sternberg ◽  
Henry Mauricio Chaparro-Solano ◽  
Ludwig Luis Antonio Albornoz ◽  
Ángela María Pinzón-Rondón ◽  
Juan Mauricio Pardo-Oviedo ◽  
...  

2019 ◽  
Vol 32 (4) ◽  
Author(s):  
Daniela Costa ◽  
Gregorio Iraola

SUMMARYCampylobacteris among the four main causes of gastroenteritis worldwide and has increased in both developed and developing countries over the last 10 years. The vast majority of reportedCampylobacterinfections are caused byCampylobacter jejuniand, to a lesser extent,C. coli; however, the increasing recognition of other emergingCampylobacterpathogens is urgently demanding a better understanding of how these underestimated species cause disease, transmit, and evolve. In parallel to the enhanced clinical awareness of campylobacteriosis due to improved diagnostic protocols, the application of high-throughput sequencing has increased the number of whole-genome sequences available to dozens of strains of many emerging campylobacters. This has allowed for comprehensive comparative pathogenomic analyses for several species, such asC. fetusandC. concisus. These studies have started to reveal the evolutionary forces shaping their genomes and have brought to light many genomic features related to pathogenicity in these neglected species, promoting the development of new tools and approaches relevant for clinical microbiology. Despite the need for additional characterization of genomic diversity in emerging campylobacters, the increasing body of literature describing pathogenomic studies on these species deserves to be discussed from an integrative perspective. This review compiles the current knowledge and highlights future work toward deepening our understanding about genome dynamics and the mechanisms governing the evolution of pathogenicity in emergingCampylobacterspecies, which is urgently needed to develop strategies to prevent or control the spread of these pathogens.


Sign in / Sign up

Export Citation Format

Share Document