scholarly journals Aerobic Versus Resistance Training Effects on Ventricular-Arterial Coupling and Vascular Function in the STRRIDE-AT/RT Trial

2021 ◽  
Vol 8 ◽  
Author(s):  
Carolyn L. Lekavich ◽  
Jason D. Allen ◽  
Daniel R. Bensimhon ◽  
Lori A. Bateman ◽  
Cris A. Slentz ◽  
...  

Background: The goal was studying the differential effects of aerobic training (AT) vs. resistance training (RT) on cardiac and peripheral arterial capacity on cardiopulmonary (CP) and peripheral vascular (PV) function in sedentary and obese adults.Methods: In a prospective randomized controlled trial, we studied the effects of 6 months of AT vs. RT in 21 subjects. Testing included cardiac and vascular ultrasoundography and serial CP for ventricular-arterial coupling (Ees/Ea), strain-based variables, brachial artery flow-mediated dilation (BAFMD), and peak VO2 (pVO2; mL/kg/min) and peak O2-pulse (O2p; mL/beat).Results: Within the AT group (n = 11), there were significant increases in rVO2 of 4.2 mL/kg/min (SD 0.93) (p = 0.001); O2p of 1.9 mL/beat (SD 1.3) (p = 0.008) and the brachial artery post-hyperemia peak diameter 0.18 mm (SD 0.08) (p = 0.05). Within the RT group (n = 10) there was a significant increase in left ventricular end diastolic volume 7.0 mL (SD 9.8; p = 0.05) and percent flow-mediated dilation (1.8%) (SD 0.47) (p = 0.004). Comparing the AT and RT groups, post exercise, rVO2 2.97, (SD 1.22), (p = 0.03), O2p 0.01 (SD 1.3), (p = 0.01), peak hyperemic blood flow volume (1.77 mL) (SD 140.69) (p = 0.009), were higher in AT, but LVEDP 115 mL (SD 7.0) (p = 0.05) and Ees/Ea 0.68 mmHg/ml (SD 0.60) p = 0.03 were higher in RT.Discussion: The differential effects of AT and RT in this hypothesis generating study have important implications for exercise modality and clinical endpoints.

2007 ◽  
Vol 103 (5) ◽  
pp. 1655-1661 ◽  
Author(s):  
Takanobu Okamoto ◽  
Mitsuhiko Masuhara ◽  
Komei Ikuta

Aerobic exercise training combined with resistance training (RT) might prevent the deterioration of vascular function. However, how aerobic exercise performed before or after a bout of RT affects vascular function is unknown. The present study investigates the effect of aerobic exercise before and after RT on vascular function. Thirty-three young, healthy subjects were randomly assigned to groups that ran before RT (BRT: 4 male, 7 female), ran after RT (ART: 4 male, 7 female), or remained sedentary (SED: 3 male, 8 female). The BRT and ART groups performed RT at 80% of one repetition maximum and ran at 60% of the targeted heart rate twice each week for 8 wk. Both brachial-ankle pulse wave velocity (baPWV) and flow-mediated dilation (FMD) after combined training in the BRT group did not change from baseline. In contrast, baPWV after combined training in the ART group reduced from baseline (from 1,025 ± 43 to 910 ± 33 cm/s, P < 0.01). Moreover, brachial artery FMD after combined training in the ART group increased from baseline (from 7.3 ± 0.8 to 9.6 ± 0.8%, P < 0.01). Brachial artery diameter, mean blood velocity, and blood flow in the BRT and ART groups after combined training increased from baseline ( P < 0.05, P < 0.01, and P < 0.001, respectively). These values returned to the baseline during the detraining period. These values did not change in the SED group. These results suggest that although vascular function is not improved by aerobic exercise before RT, performing aerobic exercise thereafter can prevent the deteriorating of vascular function.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ueda Tomohiro

Background: Flow-mediated dilatation (FMD) of the brachial artery and Peripheral arterial tonometry (PAT) are both methods for assessing endothelial vascular function. FMD measures predominantly nitric oxide mediated vasodilation whereas PAT measures a more complex range of mechanisms. The recent study showed that the sympathetic nervous system plays a significant role in this response. Methods: The study involved 176 subjects (mean age66 ±12 years). Based on the medication of beta-blockers, they were divided into 2 groups: beta-blocker group (n=37) and control group (n=139). Flow mediated vasodilatation (FMD) and nitroglycerine-induced vasodilatation (NID) in the brachial artery was measured by using UNEXEF18G (UNEX CO, Japan), and nitroglycerin mediated vasodilatation (NMD) was used as a control test for FMD. At the same time, PAT ratio was measured by using Endo-PAT 2000 (Itamar Medical, Israel) Results: PAT ratio was significantly impaired in beta-blocker group compared to that in control group (1.5±0.4% vs. 1.9±0.6%, respectively; P<0.05). However, FMD and NMD had no deference in both groups. Multivariable analysis revealed that blood sugar and medication of beta-blockers were independent variables for PAT ratio. Conclusion: These result show that beta-blockers is associated with a tendency towards reduced PAT ratio. PAT needs to be further studied, including the assessment of non-endothelial factor


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Daniela K Andaku ◽  
Bruno Archiza ◽  
Flavia C Caruso ◽  
Katiany T Zangrando ◽  
Humberto Lanzotti ◽  
...  

Background: Recent evidence has indicated a ceiling to the benefits of exercise training that, if chronically surpassed, may have a negative effect on cardiac function. Conversely, improvements in peripheral arterial function may respond positively to chronic high volume training. Recent studies have shown that flow-mediated dilation (FMD) is decreased immediately after maximal exercise in sedentary subjects and is unaltered in subjects who participate in moderate volume exercise. We investigated the acute effects of maximal exercise on vascular function of elite female athletes with a high-volume training history. Methods: Fifteen elite female soccer players (mean age: 22.1 ± 4.4 years; BMI: 20.76 ± 1.75 kg/m2), with a high volume/intensity training history (4-6 hours per day) were evaluated. Subjects underwent maximal cardiopulmonary exercise testing (CPX) on a treadmill (VO2max 41.1 ± 3.9 mLO2•kg-1•min-1). Brachial artery FMD was determined using high-resolution ultrasound before and immediately after CPX. Flow velocity were measured at baseline (BSL) and during reactive hyperemia (RH) both prior to and following exercise. Results: Brachial artery diameter increased during RH before (3.42 ± 0.38mm vs. 3.03 ± 0.28mm, p<0.001) and after CPX (3.61 ± 0.44mm vs. 3.10 ± 0.37mm, p<0.001). Importantly, FMD was increased following CPX compared to BSL (16.86 ± 9.04% vs. 12.95 ± 7.03%, p=0.027). There was significant increase in peak flow velocity during RH before (135.28 ± 42.19cm/s vs. 79.19 ± 28.14cm/s, p=0.001) and after CPX (139.15 ± 41.07cm/s vs. 87.64 ± 21.23cm/s, p<0.001) (Table). Conclusion: The results of the current study indicate that arterial function is improved following acute aerobic exercise in elite female athletes with a chronic high volume training history. These findings deviate from the emerging literature suggesting chronic high volume training may be detrimental to cardiovascular function in the long term.


Author(s):  
Nidhi Pandey ◽  
Poonam Goel ◽  
Anita Malhotra ◽  
Reeti Mehra ◽  
Navjot Kaur

Background: The objective of the study was to assess vascular function in normal pregnant women and women with gestational diabetes and to study its temporal relationship with gestational age at 24-28-week POG and at 36-38-week POG and changes in FMD in postpartum period.Methods: Assessment of vascular function was done at 24-28-week POG, 36-38-week POG and at 6-12-week postpartum by flow mediated dilation of brachial artery in 37 healthy pregnant women and 37 pregnant women with GDM.Results: In GDM group mean FMD at 24-28 weeks of POG, at 36-38 weeks POG was lower as compared to the control group (11.225±6.20,8.464±6.09 versus 14.49±5.21, 10.898±4.12) although the difference in mean FMD in two groups was not statistically significant. It was found that the decrease in FMD at 36-38-week POG as compared to 24-28 weeks POG was statistically significant in both the groups (p<0.001).Conclusions: This study revealed that when endothelial function as assessed by FMD was compared at different period of gestation, the mean decrease in FMD at 36-38-week POG as compared to 24-28-week POG and 6-week post-partum was statistically significant in patients with GDM and as well as the control group, however this trend of change was same in both the groups and was not statistically significant when compared between the two group (GDM versus control). A negative correlation of FMD was found with BMI, and HBA1c, that was stronger in GDM group.


2019 ◽  
Vol 316 (5) ◽  
pp. F898-F905 ◽  
Author(s):  
Danielle L. Kirkman ◽  
Meghan G. Ramick ◽  
Bryce J. Muth ◽  
Joseph M. Stock ◽  
Ryan T. Pohlig ◽  
...  

Endothelial dysfunction and arterial stiffness are nontraditional risk factors of chronic kidney disease (CKD)-related cardiovascular disease (CVD) that could be targeted with exercise. This study investigated the effect of moderate to vigorous aerobic exercise on vascular function in nondialysis CKD. In this randomized, controlled trial, 36 nondialysis patients with CKD (means ± SE, age: 58 ± 2 yr, estimated glomerular filtration rate: 44 ± 2 ml·min−1·1.73 m−2) were allocated to an exercise training (EXT) or control (CON) arm. The EXT group performed 3 × 45 min of supervised exercise per week at 60–85% heart rate reserve for 12 wk, whereas the CON group received routine care. Outcomes were assessed at 0 and 12 wk. The primary outcome, microvascular function, was assessed via cutaneous vasodilation during local heating measured by laser-Doppler flowmetry coupled with microdialysis. Participants were instrumented with two microdialysis fibers for the delivery of 1) Ringer solution and 2) the superoxide scavenger tempol. Conduit artery function was assessed via brachial artery flow-mediated dilation. Aortic pressure waveforms and pulse wave velocity were acquired with tonometry and oscillometry. Microvascular function improved after EXT ( week 0 vs . week 12, EXT: 87 ± 2% vs. 91 ± 2% and CON: 86 ± 2% vs. 84 ± 3%, P = 0.03). At baseline, pharmacological delivery of tempol improved microvascular function (Ringer solution vs. tempol: 86 ± 1% vs. 90 ± 1%, P = 0.02) but was no longer effective after EXT (91 ± 2% vs. 87 ± 1%, P = 0.2), suggesting that an improved redox balance plays a role in EXT-related improvements. Brachial artery flow-mediated dilation was maintained after EXT (EXT: 2.6 ± 0.4% vs. 3.8 ± 0.8% and CON: 3.5 ± 0.6% vs. 2.3 ± 0.4%, P = 0.02). Central arterial hemodynamics and arterial stiffness were unchanged after EXT. Aerobic exercise improved microvascular function and maintained conduit artery function and should be considered as an adjunct therapy to reduce CVD risk in CKD.


Vascular ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 87-95
Author(s):  
Tomoyasu Kadoguchi ◽  
Masahiro Horiuchi ◽  
Shintaro Kinugawa ◽  
Koichi Okita

Objectives Heterogeneity and homogeneity in the flow-mediated dilation of the human body's individual extremities are not fully understood, and the relationship between flow-mediated dilation and local muscle activity is unclear. We assessed the flow-mediated dilation of four individual extremities and sought to determine the contribution of local muscle activity (evaluated as muscle strength) to the flow-mediated dilation in each extremity. Methods Thirteen healthy young right-handed nonactive males participated. The flow-mediated dilation in the brachial and popliteal arteries at both arms and legs was assessed by ultrasound Doppler. Muscle strength was evaluated as the grip strength and knee extension. Results There was a significant difference in the brachial artery (BA)-FMD values between the subjects' dominant and non-dominant sides (8.0 ± 2.8 vs. 5.5 ± 2.2%, p < 0.05), whereas the two sides showed similar popliteal artery (PA)-FMD values. There was no significant correlation in flow-mediated dilation between the dominant brachial artery and popliteal artery. The BA-FMD was significantly correlated with the grip strength in both upper extremities (dominant: r = 0.562, non-dominant: r = 0.548; p < 0.05, respectively). Conclusion These results demonstrated heterogeneity in the flow-mediated dilation of individual extremities. We observed that local muscle activity can affect the local vascular function. Measurements of vasodilatory function in individual extremities should thus be carefully considered.


2015 ◽  
Vol 119 (8) ◽  
pp. 926-933 ◽  
Author(s):  
Nicola D. Hopkins ◽  
Donald R. Dengel ◽  
Gareth Stratton ◽  
Aaron S. Kelly ◽  
Julia Steinberger ◽  
...  

Flow-mediated dilation (FMD) is a noninvasive technique used to measure conduit artery vascular function. Limited information is available on normative FMD values in healthy children and adolescents. The objective of this study was to assess relationships between age and sex with FMD across childhood and adolescence. Nine hundred and seventy-eight asymptomatic children (12 ± 3 yr, range 6–18 yr, 530 male) underwent ultrasonic brachial artery assessment before and after 5 min of forearm ischemia. Sex differences in FMD and baseline artery diameter were assessed using mixed linear models. Baseline artery diameter was smaller in females than males [2.96 mm (95% CI: 2.92–3.00) vs. 3.24 mm (3.19–3.28), P < 0.001] and increased with age across the cohort ( P < 0.001). Diameter increased between ages 6 and 17 yr in males [from 2.81 mm (2.63, 3.00) to 3.91 mm (3.68, 4.14)] but plateaued at age 12 yr in females. Males had a lower FMD [7.62% (7.33–7.91) vs. 8.31% (7.95–8.66), P = 0.024], specifically at ages 17 and 18 yr. There was a significant effect of age on FMD ( P = 0.023), with a reduction in FMD apparent postpuberty in males. In conclusion, the brachial artery increases structurally with age in both sexes; however, there are sex differences in the timing and rate of growth, in line with typical sex-specific adolescent growth patterns. Males have a lower FMD than females, and FMD appears to decline with age; however, these findings are driven by reductions in FMD as males near maturity. The use of age- and sex-specific FMD data may therefore not be pertinent in childhood and adolescence.


2019 ◽  
Author(s):  
Samuel Amorim ◽  
Hans Degens ◽  
Alexandra Passos Gaspar ◽  
Luciana Diniz Nagem Janot De Matos

BACKGROUND During aging, a significant loss of muscle mass, strength, and power is associated with a decline in daily functional capacities. Traditionally, resistance training is prescribed to prevent or reverse the skeletal muscle weakness, but the required training intensity may be too demanding for older people with poor physical performance. Resistance exercise with blood flow moderation (KAATSU training), originally developed in Japan, combines resistance exercise with blood flow restriction. It has been reported that KAATSU training enhances muscle hypertrophy in many populations. However, few studies have evaluated the effects of resistance exercises with blood flow restriction in elderly people and how this affects vascular structure and function. OBJECTIVE The aim of this study was to evaluate (1) the acute and chronic effects of resistance exercise with blood flow restriction on vascular health in elderly people with low gait speed and (2) whether low-load resistance training with blood flow restriction elicits similar strength and gait speed gains to those elicited by conventional resistance training without blood flow restriction. METHODS This is an ongoing randomized controlled trial in elderly people with low gait speed. Overall, two study arms of 13 participants each perform resistance exercise with and without blood flow restriction. The 2 groups are as follows: the control group will perform conventional resistance exercise (60% of 1 repetition maximum) and the KAATSU group will perform the low-load resistance exercise with blood flow restriction (20% of 1 repetition maximum) for 12 weeks. Pulse wave velocity, venous occlusion plethysmography, and flow-mediated dilation are used to assess arterial stiffness, muscle blood flow, and endothelial function, respectively. The secondary outcomes are gait speed, strength, and quality of life. All measures will be performed before and after the training program. RESULTS This research study is in progress. Recruitment has started, and data collection is expected to finish in August 2020. CONCLUSIONS The findings of this study will have important implications for the rehabilitation of elderly people. CLINICALTRIAL ClinicalTrials.gov NCT03272737; https://clinicaltrials.gov/ct2/show/NCT03272737


1997 ◽  
Vol 2 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Akimi Uehata ◽  
Eric H Lieberman ◽  
Marie D Gerhard ◽  
Todd J Anderson ◽  
Peter Ganz ◽  
...  

Coronary atherosclerosis is characterized by an early loss of endothelium-dependent vasodilation. However, the methods of assessing coronary endothelial function are invasive and difficult to repeat over time. Recently, a noninvasive ultrasound method has been widely used to measure flow-mediated dilation in the brachial artery as a surrogate test for endothelial function. We seek to further validate this method of measuring vascular function. The brachial artery diameters and blood flow of 20 normal volunteers (10 males and 10 females) were measured using high resolution (7.5 MHz) ultrasound and strain gauge plethysmography. Flow-mediated endothelium-dependent vasodilation was measured in the brachial artery during reactive hyperemia after 5 minutes of cuff occlusion in the upper arm. The brachial artery diameter increased maximally by 9.7 ± 4.3% from baseline at 1 min after cuff release and blood flow increased by 1002 ± 376%. Five min of cuff occlusion was sufficient to achieve 97 ± 6% of maximal brachial artery dilation and degree of dilation was not different whether the cuff was inflated proximally or distally to the image site. The intraobserver variability in measuring brachial diameters was 2.9 % and the variability of the hyperemic response was 1.4%. In young, healthy men and women, the baseline brachial artery diameter was the only factor that was predictive of the flow-mediated vasodilation response. The brachial noninvasive technique has been further validated by the determination of flow-mediated dilation. This method of assessing endothelial function may help to determine the importance of vasodilator dysfunction as a risk factor in the development of atherosclerosis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Abel Romero Corral ◽  
Justo Sierra-Johnson ◽  
Marek Orban ◽  
Apoor S Gami ◽  
Fatima H Sert Kuniyoshi ◽  
...  

Background: Endothelial dysfunction assessed by flow mediated dilation (FMD) of the brachial artery has been identified as an independent predictor of cardiovascular events. However, whether weight gain impairs endothelial function is unknown. Methods: A randomized blinded controlled-trial to assess the effects of weight gain on endothelial function. After a weight maintenance period supervised by an experience dietitian, volunteers were randomized to gain weight (4 kg) or maintain weight. We recruited lean (BMI 18.5–24.9 kg/m 2 ) healthy volunteers (no diseases, medications and non-smokers) from the community. Using ultrasound, endothelial function was measured by FMD and non-flow mediated dilation (NFMD) of the brachial artery in the early morning (6:30 a.m.). Endothelial function was measured at baseline, after fat gain at 8 weeks and after weight loss at 16 weeks for fat-gainers and at baseline and follow-up (8 weeks) for weight maintainers. Body composition techniques to measure body fat %, such as dual x-ray absorptiometry and abdominal CT scans were performed. Results: We recruited 35 fat-gainers and 8 weight maintainers. Mean age was 29 ± 6 years and 18 (42 %) were women. There were no differences in age, anthropometric and body composition measurements, blood pressure, heart rate or apnea hypopnea index at baseline between both groups. After an average gain of 4 kg, the fat-gainer group significantly increased their total, visceral and subcutaneous fat. Brachial artery FMD and NFMD remained unchanged in weight maintainers. However, it decreaed in fat-gainers (FMD=9.1 ± 3 vs. 7.6 ± 3.2, p=0.003 and NFMD=12.0 ± 4.9 vs. 10.1 ± 6.0, p=0.01), but recovered to baseline after subjects shed the gained weight (basleline vs. recovery: FMD=9.1 ± 3 vs. 9.0 ± 3, p=NS and NFMD =12.0 ± 4.9 vs.12.6 ± 5.0, p=NS). Visceral fat gain, but not subcutaneous fat gain was significantly correlated with the decrease in brachial artery FMD (rho =−0.42, p=0.004 and rho =−0.22, p=0.15, respectively). Conclusions: In lean healthy young subjects, modest weight gain results in impaired endothelial function, even in the absence of changes in blood pressure. Endothelial funcion recovers after weight loss. Viscerar rather than subcutaneous fat predicts endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document