scholarly journals Ge/Si and Ge Isotope Fractionation During Glacial and Non-glacial Weathering: Field and Experimental Data From West Greenland

2021 ◽  
Vol 9 ◽  
Author(s):  
J. Jotautas Baronas ◽  
Douglas E. Hammond ◽  
Mia M. Bennett ◽  
Olivier Rouxel ◽  
Lincoln H. Pitcher ◽  
...  

Glacial environments offer the opportunity to study the incipient stages of chemical weathering due to the high availability of finely ground sediments, low water temperatures, and typically short rock-water interaction times. In this study we focused on the geochemical behavior of germanium (Ge) in west Greenland, both during subglacial weathering by investigating glacier-fed streams, as well as during a batch reactor experiment by allowing water-sediment interaction for up to 2 years in the laboratory. Sampled in late August 2014, glacial stream Ge and Si concentrations were low, ranging between 12–55 pmol/L and 7–33 µmol/L, respectively (Ge/Si = 0.9–2.2 µmol/mol, similar to parent rock). As reported previously, the dissolved stable Ge isotope ratio (δ74Ge) of the Watson River was 0.86 ± 0.24‰, the lowest among global rivers and streams measured to date. This value was only slightly heavier than the suspended load (0.48 ± 0.23‰), which is likely representative of the bulk parent rock composition. Despite limited Ge/Si and δ74GeGe fractionation, both Ge and Si appear depleted relative to Na during subglacial weathering, which we interpret as the relatively congruent uptake of both phases by amorphous silica (aSi). Continued sediment-water interaction over 470–785 days in the lab produced a large increase in dissolved Si concentrations (up to 130–230 µmol/L), a much smaller increase in dissolved Ge (up to ∼70 pmol/L), resulting in a Ge/Si decrease (to 0.4–0.5 µmol/mol) and a significant increase in δ74Ge (to 1.9–2.2‰). We argue that during the experiment, both Si and Ge are released by the dissolution of previously subglacially formed aSi, and Ge is then incorporated into secondary phases (likely adsorbed to Fe oxyhydroxides), with an associated Δ74Gesecondary−dissolved fractionation factor of −2.15 ± 0.46‰. In summary, we directly demonstrate Ge isotope fractionation during the dissolution-precipitation weathering reactions of natural sediments in the absence of biological Ge and Si uptake, and highlight the significant differences in Ge behavior during subglacial and non-glacial weathering.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 208
Author(s):  
Takuma Hasegawa ◽  
Kotaro Nakata ◽  
Rhys Gwynne

For radioactive waste disposal, it is important that local groundwater flow is slow as groundwater flow is the main transport medium for radioactive nuclides in geological formations. When the groundwater flow is very slow, diffusion is the dominant transport mechanism (diffusion-dominant domain). Key pieces of evidence indicating a diffusion-dominant domain are the separation of components and the fractionation of isotopes by diffusion. To prove this, it is necessary to investigate the different diffusion coefficients for each component and the related stable isotope fractionation factors. Thus, in this study, through-diffusion and effective-porosity experiments were conducted on selected artificial materials and natural rocks. We also undertook measurements relating to the isotope fractionation factors of Cl and Br isotopes for natural samples. For natural rock samples, the diffusion coefficients of water isotopes (HDO and H218O) were three to four times higher than those of monovalent anions (Cl−, Br- and NO3−), and the isotope fractionation factor of 37Cl (1.0017–1.0021) was slightly higher than that of free water. It was experimentally confirmed that the isotope fractionation factor of 81Br was approximately 1.0007–1.0010, which is equivalent to that of free water. The enrichment factor of 81Br was almost half that of 37Cl. The effective porosity ratios of HDO and Cl were slightly different, but the difference was not significant compared to the ratio of their diffusion coefficients. As a result, component separation was dominated by diffusion. For artificial samples, the diffusion coefficients and effective porosities of HDO and Cl were almost the same; it was thus difficult to assess the component separation by diffusion. However, isotope fractionation of Cl and Br was confirmed using a through-diffusion experiment. The results show that HDO and Cl separation and isotope fractionation of Cl and Br can be expected in diffusion-dominant domains in geological formations.


2015 ◽  
Vol 11 (11) ◽  
pp. 1527-1551 ◽  
Author(s):  
C. Reutenauer ◽  
A. Landais ◽  
T. Blunier ◽  
C. Bréant ◽  
M. Kageyama ◽  
...  

Abstract. δ18O of atmospheric oxygen (δ18Oatm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ18Oatm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ18Oatm is thus not straightforward. Here, we quantify the response of δ18Oatm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope fractionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions, vegetation distribution and δ18O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ18Oatm. The results highlight the dominant role of hydrology on δ18Oatm and confirm that δ18Oatm can be seen as a global integrator of hydrological changes over vegetated areas.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1415 ◽  
Author(s):  
Wang ◽  
Wei ◽  
Jiang ◽  
Liu ◽  
Lei ◽  
...  

The fundamental advances in silicon isotope geochemistry have been systematically demonstrated in this work. Firstly, the continuous modifications in analytical approaches and the silicon isotope variations in major reservoirs and geological processes have been briefly introduced. Secondly, the silicon isotope fractionation linked to silicon complexation/coordination and thermodynamic conditions have been extensively stressed, including silicate minerals with variable structures and chemical compositions, silica precipitation and diagenesis, chemical weathering of crustal surface silicate rocks, biological uptake, global oceanic Si cycle, etc. Finally, the relevant geological implications for meteorites and planetary core formation, ore deposits formation, hydrothermal fluids activities, and silicon cycling in hydrosphere have been summarized. Compared to the thermodynamic isotope fractionation of silicon associated with high-temperature processes, that in low-temperature geological processes is much more significant (e.g., chemical weathering, biogenic/non-biogenic precipitation, biological uptake, adsorption, etc.). The equilibrium silicon isotope fractionation during the mantle-core differentiation resulted in the observed heavy isotope composition of the bulk silicate Earth (BSE). The equilibrium fractionation of silicon isotopes among silicate minerals are sensitive to the Si–O bond length, Si coordination numbers (CN), the polymerization degrees of silicate unites, and the electronegativity of cations in minerals. The preferential enrichment of different speciation of dissoluble Si (DSi) (e.g., silicic acid H4SiO40 (H4) and H3SiO4− (H3)) in silica precipitation and diagenesis, and chemical weathering, lead to predominately positive Si isotope signatures in continental surface waters, in which the dynamic fractionation of silicon isotope could be well described by the Rayleigh fractionation model. The role of complexation in biological fractionations of silicon isotopes is more complicated, likely involving several enzymatic processes and active transport proteins. The integrated understanding greatly strengthens the potential of δ30Si proxy for reconstructing the paleo terrestrial and oceanic environments, and exploring the meteorites and planetary core formation, as well as constraining ore deposits and hydrothermal fluid activity.


2016 ◽  
Vol 13 (5) ◽  
pp. 1453-1468 ◽  
Author(s):  
Happy Hu ◽  
Annie Bourbonnais ◽  
Jennifer Larkum ◽  
Hermann W. Bange ◽  
Mark A. Altabet

Abstract. O2 deficient zones (ODZs) of the world's oceans are important locations for microbial dissimilatory nitrate (NO3−) reduction and subsequent loss of combined nitrogen (N) to biogenic N2 gas. ODZs are generally coupled to regions of high productivity leading to high rates of N-loss as found in the coastal upwelling region off Peru. Stable N and O isotope ratios can be used as natural tracers of ODZ N-cycling because of distinct kinetic isotope effects associated with microbially mediated N-cycle transformations. Here we present NO3− and nitrite (NO2−) stable isotope data from the nearshore upwelling region off Callao, Peru. Subsurface oxygen was generally depleted below about 30 m depth with concentrations less than 10 µM, while NO2− concentrations were high, ranging from 6 to 10 µM, and NO3− was in places strongly depleted to near 0 µM. We observed for the first time a positive linear relationship between NO2−δ15N and δ18O at our coastal stations, analogous to that of NO3− N and O isotopes during NO3− uptake and dissimilatory reduction. This relationship is likely the result of rapid NO2− turnover due to higher organic matter flux in these coastal upwelling waters. No such relationship was observed at offshore stations where slower turnover of NO2− facilitates dominance of isotope exchange with water. We also evaluate the overall isotope fractionation effect for N-loss in this system using several approaches that vary in their underlying assumptions. While there are differences in apparent fractionation factor (ε) for N-loss as calculated from the δ15N of NO3−, dissolved inorganic N, or biogenic N2, values for ε are generally much lower than previously reported, reaching as low as 6.5 ‰. A possible explanation is the influence of sedimentary N-loss at our inshore stations which incurs highly suppressed isotope fractionation.


2019 ◽  
Vol 15 (2) ◽  
pp. 635-646 ◽  
Author(s):  
Holly L. Taylor ◽  
Isaac J. Kell Duivestein ◽  
Juraj Farkas ◽  
Martin Dietzel ◽  
Anthony Dosseto

Abstract. Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth's climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca–Mg carbonates and solution, and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca–Mg carbonates at high temperatures (150 to 220 ∘C) and measured the Li isotope composition (δ7Li) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained: 103ln⁡αprec-sol=-(2.56±0.27)106(1)/T2+(5.8±1.3) Competitive nucleation and growth between dolomite and magnesite were observed during the experiments; however, there was no notable effect of their relative proportion on the apparent Li isotope fractionation. We found that Li isotope fractionation between the precipitated solid and solution is higher for Ca–Mg carbonates than for Ca carbonates. If the temperature of a precipitating solution is known or can be estimated independently, the above equation could be used in conjunction with the Li isotope composition of dolostones to derive the composition of the solution and hence make inferences about the past Li cycle. In addition, we also conducted leaching experiments on a Neoproterozoic dolostone and a Holocene coral. Results show that leaching with 0.05 M hydrochloric acid (HCl) or 0.5 % acetic acid (HAc) at room temperature for 60 min releases Li from the carbonate fraction without a significant contribution of Li from the siliciclastic detrital component. These experimental and analytical developments provide a basis for the use of Li isotopes in dolostones as a palaeo-environmental proxy, which will contribute to further advance our understanding of the evolution of Earth's surface environments.


2020 ◽  
Vol 539 ◽  
pp. 116192 ◽  
Author(s):  
Heng Chen ◽  
Xiao-Ming Liu ◽  
Kun Wang

1975 ◽  
Vol 30 (1) ◽  
pp. 38-43
Author(s):  
J. Szydłowski

Abstract Hydrogen isotope fractionation between hydrogen dichloride ion in the condensed phase and gaseous hydrogen chloride has been studied both theoretically and experimentally. Quite good agreement between the experimental tritium fractionation factor and that theoretically calculated for two sets of vibrational data was found. Theoretical calculations of the fractionation factors of both deuterium and tritium over the large temperature range of 100-2000 K revealed some anomalies (minima and crossover points) in their temperature dependences. The relative tritium-deuterium isotope effect has also been discussed within the framework of the presently accepted statistical-thermodynamic theory in the harmonic approximation and recent works by Stern et al.


2004 ◽  
Vol 70 (5) ◽  
pp. 2935-2940 ◽  
Author(s):  
Barbara Morasch ◽  
Hans H. Richnow ◽  
Andrea Vieth ◽  
Bernhard Schink ◽  
Rainer U. Meckenstock

ABSTRACT Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ε) of −1.5 and −3.9, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ε (εintrinsic) were calculated. A comparison of εintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ε elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ε found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ε if no fractionation factor is available for single compounds.


Sign in / Sign up

Export Citation Format

Share Document