scholarly journals Can Chinese Families Achieve a Low-Carbon Lifestyle? An Empirical Test of China’s Low-Carbon Pilot Policy

2021 ◽  
Vol 9 ◽  
Author(s):  
Xuetao Sun ◽  
Zhenhua Wang

Global warming has caused concern among countries worldwide. Since 2010, the Chinese government has implemented low-carbon pilot policies (LCPPs) in some regions to control carbon emissions. To evaluate the implementation effects of the LCPPs, we matched China’s macro data with Chinese household financial survey data. Specifically, we used a OLS model for assessing the impact of LCPPs on China’s household carbon emissions and conducted heterogeneous analysis. Further, we evaluated the mechanism through which LCPPs affect the carbon emissions of Chinese households. The research results yielded three main findings. (1) LCPPs can promote a reduction in household carbon emissions; however, the impact of LCPPs on household carbon emissions exhibits a time lag. (2) LCPPs reduce household carbon emissions by promoting the upgradation of the household consumption structure. The LCPP enables households to reduce consumption of products involving high levels of carbon emissions, while increasing consumption of low-carbon emission products, thereby affecting total household carbon emissions. (3) An analysis of household heterogeneity revealed that LCPPs mainly affect household carbon emissions in the country’s eastern and central regions, especially urban households’ carbon emissions. This paper describes the implementation effects of LCPPs and suggests a viable path for the further implementation of LCPPs.

Author(s):  
Hongpeng Guo ◽  
Sidong Xie ◽  
Chulin Pan

This paper focuses on the impact of changes in planting industry structure on carbon emissions. Based on the statistical data of the planting industry in three provinces in Northeast China from 1999 to 2018, the study calculated the carbon emissions, carbon absorptions and net carbon sinks of the planting industry by using crop parameter estimation and carbon emissions inventory estimation methods. In addition, the multiple linear regression model and panel data model were used to analyze and test the carbon emissions and net carbon sinks of the planting industry. The results show that: (1). The increase of the planting area of rice, corn, and peanuts in the three northeastern provinces of China will promote carbon emissions, while the increase of the planting area of wheat, sorghum, soybeans, and vegetables will reduce carbon emissions; (2). Fertilizer application, technological progress, and planting structure factors have a significant positive effect on net carbon sinks, among which the changes in the planting industry structure have the greatest impact on net carbon sinks. Based on the comprehensive analysis, it is suggested that, under the guidance of the government, resource endowment and location advantages should be given full play to, and the internal planting structure of crops should be reasonably adjusted so as to promote the development of low-carbon agriculture and accelerate the development process of agricultural modernization.


2020 ◽  
Vol 12 (19) ◽  
pp. 8118
Author(s):  
Tu Peng ◽  
Xu Yang ◽  
Zi Xu ◽  
Yu Liang

The sustainable development of mankind is a matter of concern to the whole world. Environmental pollution and haze diffusion have greatly affected the sustainable development of mankind. According to previous research, vehicle exhaust emissions are an important source of environmental pollution and haze diffusion. The sharp increase in the number of cars has also made the supply of energy increasingly tight. In this paper, we have explored the use of intelligent navigation technology based on data analysis to reduce the overall carbon emissions of vehicles on road networks. We have implemented a traffic flow prediction method using a genetic algorithm and particle-swarm-optimization-enhanced support vector regression, constructed a model for predicting vehicle exhaust emissions based on predicted road conditions and vehicle fuel consumption, and built our low-carbon-emission-oriented navigation algorithm based on a spatially optimized dynamic path planning algorithm. The results show that our method could help to significantly reduce the overall carbon emissions of vehicles on the road network, which means that our method could contribute to the construction of low-carbon-emission intelligent transportation systems and smart cities.


2020 ◽  
Vol 12 (4) ◽  
pp. 1428 ◽  
Author(s):  
Na Lu ◽  
Shuyi Feng ◽  
Ziming Liu ◽  
Weidong Wang ◽  
Hualiang Lu ◽  
...  

As the largest carbon emitter in the world, China is confronted with great challenges of mitigating carbon emissions, especially from its construction industry. Yet, the understanding of carbon emissions in the construction industry remains limited. As one of the first few attempts, this paper contributes to the literature by identifying the determinants of carbon emissions in the Chinese construction industry from the perspective of spatial spillover effects. A panel dataset of 30 provinces or municipalities from 2005 to 2015 was used for the analysis. We found that there is a significant and positive spatial autocorrelation of carbon emissions. The local Moran’s I showed local agglomeration characteristics of H-H (high-high) and L-L (low-low). The indicators of population density, economic growth, energy structure, and industrial structure had either direct or indirect effects on carbon emissions. In particular, we found that low-carbon technology innovation significantly reduces carbon emissions, both in local and neighboring regions. We also found that the industry agglomeration significantly increases carbon emissions in the local regions. Our results imply that the Chinese government can reduce carbon emissions by encouraging low-carbon technology innovations. Meanwhile, our results also highlight the negative environmental impacts of the current policies to promote industry agglomeration.


2019 ◽  
Vol 11 (16) ◽  
pp. 4387 ◽  
Author(s):  
Lin ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Shi ◽  
...  

The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the basis of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution routes with and without carbon emissions cost are constructed. Fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit.


2020 ◽  
Vol 12 (18) ◽  
pp. 2916
Author(s):  
Yu Sun ◽  
Sheng Zheng ◽  
Yuzhe Wu ◽  
Uwe Schlink ◽  
Ramesh P. Singh

China is one of the largest carbon emitting countries in the world. Numerous strategies have been considered by the Chinese government to mitigate carbon emissions in recent years. Accurate and timely estimation of spatiotemporal variations of city-level carbon emissions is of vital importance for planning of low-carbon strategies. For an assessment of the spatiotemporal variations of city-level carbon emissions in China during the periods 2000–2017, we used nighttime light data as a proxy from two sources: Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data and the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). The results show that cities with low carbon emissions are located in the western and central parts of China. In contrast, cities with high carbon emissions are mainly located in the Beijing-Tianjin-Hebei region (BTH) and Yangtze River Delta (YRD). Half of the cities of China have been making efforts to reduce carbon emissions since 2012, and regional disparities among cities are steadily decreasing. Two clusters of high-emission cities located in the BTH and YRD followed two different paths of carbon emissions owing to the diverse political status and pillar industries. We conclude that carbon emissions in China have undergone a transformation to decline, but a very slow balancing between the spatial pattern of high-emission versus low-emission regions in China can be presumed.


2014 ◽  
Vol 687-691 ◽  
pp. 4478-4481 ◽  
Author(s):  
Lei Yu

Based on rural as research object, this paper mainly combines the local rural development present situation to measure rural carbon emissions, and with the help of Kaya model respectively. The rural residents' energy consumption and carbon emissions are generated by the impact factors of agricultural production LMDI decomposition. And it established the cointegration model of influence factors of the carbon in the empirical analysis. It seek a accord with the actual situation of rural low carbon economy development path.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2025 ◽  
Author(s):  
Junbo Wang ◽  
Liu Chen ◽  
Lu Chen ◽  
Xiaohui Zhao ◽  
Minxi Wang ◽  
...  

The sustainable development of the western region of China has always been essential to the national development strategy. The Western region has undertaken an industrial transfer from the Eastern and Central regions. Therefore, the CO2 emission intensity in the western region is higher than those of the Eastern and Central regions of China, and consequently its low-carbon development pathway has an important impact for China as a whole. Sichuan Province is not only the province with the highest CO2 emissions, but also the most economically developed province in Western China in 2018. In order to promote low carbon development in the western region, it is important to understand the features of emissions in Sichuan Province and to formulate effective energy strategies accordingly. This paper uses the IPCC regional emission accounting method to calculate the carbon emissions of 15 cities in Sichuan province, and to comply with the city-level emission accounts. The results show that the total carbon emissions of Sichuan province over the past 10 years was 3258.32 mt and reached a peak in 2012. The smelting and pressing of ferrous metals, coal mining and dressing were the leading sectors that contributed to the emissions, accounting for 17.86% and 15.82%, respectively. Raw coal, cleaned coal, and coke were the most significant contributors to CO2 emissions, accounting for 43.73%, 9.55%, and 6.60%, respectively. Following the above results, the Sichuan provincial government can formulate differentiated energy structure policies according to different energy consumption structures and carbon emission levels in the 15 cities. By controlling the level of total emissions and regulating larger industrial emitters in Sichuan province, some useful information could be provided as an essential reference for low-carbon development in Western China, and contribute to the promotion of emissions mitigation from a more holistic perspective.


2020 ◽  
Vol 10 (16) ◽  
pp. 5543
Author(s):  
Yi Zhang ◽  
He Qi ◽  
Yu Zhou ◽  
Zhonghua Zhang ◽  
Xi Wang

To meet long-term climate change targets, the way that heating and cooling are generated and distributed has to be changed to achieve a supply of affordable, secure and low-carbon energy for all buildings and infrastructures. Among the possible renewable sources of energy, ground source heat pump (GSHP) systems can be an effective low-carbon solution that is compatible with district heating and cooling in urban areas. There are no location restrictions for this technology, and underground energy sources are stable for long-term use. According to a previous study, buildings in urban areas have demonstrated significant spatial heterogeneity in terms of their capacity to demand (C/D) ratio under the application of GSHP due to variations in heating demand and available space. If a spatial sharing strategy can be developed to allow the surplus geothermal capacity to be shared with neighbors, the heating and cooling demands of a greater number of buildings in an area can be satisfied, thus achieving a city with lower carbon emissions. In this study, a GSHP district system model was developed with a specific embedding sharing strategy for the application of GSHP. Two sharing strategies were proposed in this study: (i) Strategy 1 involved individual systems with borehole sharing, and (ii) Strategy 2 was a central district system. Three districts in London were selected to compare the performance of the developed models on the C/D ratio, required borehole number and carbon emissions. According to the comparison analysis, both strategies were able to enhance the GSHP application capacity and increase the savings of carbon emissions. However, the improvement levels were shown to be different. A greater number of building types and a higher variety in building types with larger differentiation in heating and cooling demands can contribute to a better district sharing performance. In addition, it was found that these two sharing strategies were applicable to different kinds of districts.


2015 ◽  
Vol 03 (03) ◽  
pp. 1550021
Author(s):  
Ying CHEN ◽  
Liyong LIU ◽  
Ying ZHANG

With the increase of urban population around the world, the massive construction of urban infrastructure and residential housing is hard to avoid. Urbanization has become a major factor that influences carbon emissions instead of a secondary factor due to more and more energy consumption and carbon emissions caused by the economic activities related to urbanization. China is in a stage of rapid development of urbanization, and urban construction has a huge potential demand for steel and iron, cement, and other high energy-consuming products, and thus the development of urbanization in the future will bring great challenge to the realization of China’s carbon emissions peak. Through the exploration and the analysis of the mechanism of urbanization’s impact on carbon emissions and the experience of urbanization development in developed countries, this paper summarizes the general evolving rules of carbon emissions peak along with the development of urbanization, defines the present stage of our country and briefly analyzes the arrival of China’s carbon emissions peak in the future. During the process of China’s new-type urbanization development in the future, we should make a scientific planning integrated with low-carbon concept from the demographic, social, economic, spatial structure, technical, and other dimensions, in order to reduce the impact of urbanization development on carbon emissions and realize the carbon emissions peak of China early.


2021 ◽  
Author(s):  
Caijiang Zhang ◽  
Yu Zhou ◽  
Zhangwen Li

Abstract Low-carbon technology innovation plays an essential role in carbon emission reduction worldwide. This study investigates how low-carbon innovation affects carbon emissions by the Dynamic Spatial Durbin Model based on the panel data of 30 Chinses provinces from 2007 to 2017. The empirical results show that: Firstly, low-carbon innovation decreases carbon emissions from local and neighbor, the decreasing effects are significant mainly in the short term. Secondly, the results of the heterogeneity test indicate that the weakening effect of low-carbon innovation in central regions is consistent with the national results. The weakening effects are shown in long-term indirect and short-term direct in eastern regions. Thirdly, there is an inverted-U curve between economic development and carbon emissions, confirming the environmental Kuznets curve (EKC) hypothesis. However, the inflection point is insurmountable under the current level of technology in China. Finally, The results also show the “Pollution Paradise” effect.


Sign in / Sign up

Export Citation Format

Share Document