scholarly journals eDNA Detection of Native and Invasive Crayfish Species Allows for Year-Round Monitoring and Large-Scale Screening of Lotic Systems

2021 ◽  
Vol 9 ◽  
Author(s):  
Franziska Chucholl ◽  
Franziska Fiolka ◽  
Gernot Segelbacher ◽  
Laura Saskia Epp

Effective management of both endangered native and invasive alien crayfishes requires knowledge about distribution, monitoring of existing and early detection of newly established populations. Complementary to traditional survey methods, eDNA sampling has recently emerged as a highly sensitive non-invasive detection method to monitor crayfish populations. To advance the use of eDNA as detection tool for crayfish we used a twofold approach: 1) we designed a novel set of specific eDNA-assays for all native (Austropotamobius torrentium, Austropotamobius pallipes, Astacus astacus) and the most relevant invasive crayfish species (Pacifastacus leniusculus, Faxonius limosus, Faxonius immunis) in Central Europe. To ensure specificity each primer pair was tested in silico, in vitro, and in situ; 2) we assessed the influence of spatio-temporal variables (distance to upstream population, season, stream size) on eDNA detection in seven streams using two different detection methods (qualitative endpoint PCR and quantitative droplet digital PCR, ddPCR). The newly developed eDNA assays successfully detected all crayfish species across different lotic and lentic habitats. eDNA detection rate (endpoint PCR) and eDNA-concentration (ddPCR) were significantly influenced by distance and season. eDNA detection was successful up to 7 km downstream of the source population and across all seasons, although detectability was lowest in winter. eDNA detection rate further decreased with increasing stream size. Finally, eDNA-concentration correlated positively with estimated upstream population size. Overall, we provide near operational eDNA assays for six crayfish species, enabling year-round detection, which represents a clear benefit over conventional methods. Due to its high sensitivity, eDNA detection is also suitable for the targeted search of as-yet unrecorded or newly emerging populations. Using quantitative ddPCR might further allow for a rough estimation of population size, provided that the identified spatio-temporal factors are accounted for. We therefore recommend implementing eDNA-detection as a complementary survey tool, particularly for a large-scale screening of data-deficient catchments or a year-round monitoring.

2021 ◽  
Vol 4 ◽  
Author(s):  
Franziska Chucholl ◽  
Laura Epp ◽  
Gernot Segelbacher

Freshwater crayfish are among the most threatened animal taxa in Central Europe. Effective conservation measures for endangered native and management of invasive alien crayfishes requires knowledge about distribution, monitoring of existing and early detection of newly established populations. eDNA has recently emerged as a promsing, highly sensitive, and non-invasive detection tool in this regard. To evaluate eDNA as detection tool for freshwater crayfish, we developed a novel set of specific eDNA-assays for all native (Austropotamobius torrentium, Austropotamobius pallipes, Astacus astacus) and the most relevant invasive crayfish species (Pacifastacus leniusculus, Faxonius limosus, Faxonius immunis) in Central Europe. To ensure specificity each primer pair was tested in silico, in vitro, and in situ, including a total of 13 lotic and lentic waterbodies (Fig. 1). Moreover, we assessed the influence of spatio-temporal variables (distance to upstream population, season, and stream size) on eDNA detection in seven streams using two different detection methods (qualitative endpoint PCR and quantitative droplet digital PCR, ddPCR). The newly developed eDNA assays successfully detected all crayfish species across different lotic and lentic habitats. Multiple linear mixed-effects analysis revealed a significant effect of distance and season on eDNA detection rate (endpoint PCR) and eDNA-concentration (ddPCR). Year-round detection was successful up to 7 km downstream of the source population, although detectability was lowest in winter. eDNA detection rate further decreased with increasing stream size. Finally, eDNA-concentration correlated positively with estimated upstream population size. Overall, our study provides easily applicable eDNA assays for six crayfish species, enabling year-round detection, which represents a clear benefit over conventional methods. Due to its high sensitivity, eDNA detection is also suitable for the targeted search of as-yet unrecorded or newly emerging populations. Using quantitative ddPCR might further allow for a rough estimation of population size, provided that the identified spatio-temporal factors are accounted for. We therefore recommend implementing eDNA-detection as a complementary survey tool, particularly for a large-scale screening of data-deficient catchments or a year-round monitoring (Chucholl et al. 2021).


1976 ◽  
Vol 7 (4) ◽  
pp. 236-241 ◽  
Author(s):  
Marisue Pickering ◽  
William R. Dopheide

This report deals with an effort to begin the process of effectively identifying children in rural areas with speech and language problems using existing school personnel. A two-day competency-based workshop for the purpose of training aides to conduct a large-scale screening of speech and language problems in elementary-school-age children is described. Training strategies, implementation, and evaluation procedures are discussed.


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 869
Author(s):  
Amedeo De Nicolò ◽  
Valeria Avataneo ◽  
Jessica Cusato ◽  
Alice Palermiti ◽  
Jacopo Mula ◽  
...  

Recently, large-scale screening for COVID-19 has presented a major challenge, limiting timely countermeasures. Therefore, the application of suitable rapid serological tests could provide useful information, however, little evidence regarding their robustness is currently available. In this work, we evaluated and compared the analytical performance of a rapid lateral-flow test (LFA) and a fast semiquantitative fluorescent immunoassay (FIA) for anti-nucleocapsid (anti-NC) antibodies, with the reverse transcriptase real-time PCR assay as the reference. In 222 patients, LFA showed poor sensitivity (55.9%) within two weeks from PCR, while later testing was more reliable (sensitivity of 85.7% and specificity of 93.1%). Moreover, in a subset of 100 patients, FIA showed high sensitivity (89.1%) and specificity (94.1%) after two weeks from PCR. The coupled application for the screening of 183 patients showed satisfactory concordance (K = 0.858). In conclusion, rapid serological tests were largely not useful for early diagnosis, but they showed good performance in later stages of infection. These could be useful for back-tracing and/or to identify potentially immune subjects.


2021 ◽  
Vol 22 (15) ◽  
pp. 7773
Author(s):  
Neann Mathai ◽  
Conrad Stork ◽  
Johannes Kirchmair

Experimental screening of large sets of compounds against macromolecular targets is a key strategy to identify novel bioactivities. However, large-scale screening requires substantial experimental resources and is time-consuming and challenging. Therefore, small to medium-sized compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest would be of great value to fields related to early drug discovery, in particular biochemical and cell research. Here, we present a computational approach that incorporates drug-likeness, predicted bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries with maximized chances of producing genuine hits for a wide range of proteins. The computational approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a validated, similarity-based approach, and optimizes the composition of small sets of compounds towards maximum target coverage and novelty. We found that, in comparison to the random selection of compounds for a library, our approach generates substantially improved compound sets. Quantified as the “fitness” of compound libraries, the calculated improvements ranged from +60% (for a library of 15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound libraries prepared in this work are available for download as a dataset bundle (“BonMOLière”).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koji Kawamura ◽  
Suzune Nishikawa ◽  
Kotaro Hirano ◽  
Ardianor Ardianor ◽  
Rudy Agung Nugroho ◽  
...  

AbstractAlgal biofuel research aims to make a renewable, carbon–neutral biofuel by using oil-producing microalgae. The freshwater microalga Botryococcus braunii has received much attention due to its ability to accumulate large amounts of petroleum-like hydrocarbons but suffers from slow growth. We performed a large-scale screening of fast-growing strains with 180 strains isolated from 22 ponds located in a wide geographic range from the tropics to cool-temperate. A fast-growing strain, Showa, which recorded the highest productivities of algal hydrocarbons to date, was used as a benchmark. The initial screening was performed by monitoring optical densities in glass tubes and identified 9 wild strains with faster or equivalent growth rates to Showa. The biomass-based assessments showed that biomass and hydrocarbon productivities of these strains were 12–37% and 11–88% higher than that of Showa, respectively. One strain, OIT-678 established a new record of the fastest growth rate in the race B strains with a doubling time of 1.2 days. The OIT-678 had 36% higher biomass productivity, 34% higher hydrocarbon productivity, and 20% higher biomass density than Showa at the same cultivation conditions, suggesting the potential of the new strain to break the record for the highest productivities of hydrocarbons.


Science ◽  
2021 ◽  
pp. eabf2946
Author(s):  
Louis du Plessis ◽  
John T. McCrone ◽  
Alexander E. Zarebski ◽  
Verity Hill ◽  
Christopher Ruis ◽  
...  

The UK’s COVID-19 epidemic during early 2020 was one of world’s largest and unusually well represented by virus genomic sampling. Here we reveal the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 SARS-CoV-2 genomes, including 26,181 from the UK sampled throughout the country’s first wave of infection. Using large-scale phylogenetic analyses, combined with epidemiological and travel data, we quantify the size, spatio-temporal origins and persistence of genetically-distinct UK transmission lineages. Rapid fluctuations in virus importation rates resulted in >1000 lineages; those introduced prior to national lockdown tended to be larger and more dispersed. Lineage importation and regional lineage diversity declined after lockdown, while lineage elimination was size-dependent. We discuss the implications of our genetic perspective on transmission dynamics for COVID-19 epidemiology and control.


2021 ◽  
Vol 9 (5) ◽  
pp. 1012
Author(s):  
Magdalena Zając ◽  
Magdalena Skarżyńska ◽  
Anna Lalak ◽  
Renata Kwit ◽  
Aleksandra Śmiałowska-Węglińska ◽  
...  

Reptiles are considered a reservoir of a variety of Salmonella (S.) serovars. Nevertheless, due to a lack of large-scale research, the importance of Reptilia as a Salmonella vector still remains not completely recognized. A total of 731 samples collected from reptiles and their environment were tested. The aim of the study was to assess the prevalence of Salmonella in exotic reptiles kept in Poland and to confirm Salmonella contamination of the environment after reptile exhibitions. The study included Salmonella isolation and identification, followed by epidemiological analysis of the antimicrobial resistance of the isolates. Implementation of a pathway additional to the standard Salmonella isolation protocol led to a 21% increase in the Salmonella serovars detection rate. The study showed a high occurrence of Salmonella, being the highest at 92.2% in snakes, followed by lizards (83.7%) and turtles (60.0%). The pathogen was also found in 81.2% of swabs taken from table and floor surfaces after reptile exhibitions and in two out of three egg samples. A total of 918 Salmonella strains belonging to 207 serovars and serological variants were obtained. We have noted the serovars considered important with respect to public health, i.e., S. Enteritidis, S. Typhimurium, and S. Kentucky. The study proves that exotic reptiles in Poland are a relevant reservoir of Salmonella.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1089-1099
Author(s):  
Gwenaël Ruprich-Robert ◽  
Véronique Berteaux-Lecellier ◽  
Denise Zickler ◽  
Arlette Panvier-Adoutte ◽  
Marguerite Picard

Abstract Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2+ background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to β-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document