scholarly journals Transmission of Antibiotic-Resistant Escherichia coli from Chicken Litter to Agricultural Soil

2022 ◽  
Vol 9 ◽  
Author(s):  
Dorcas Oladayo Fatoba ◽  
Daniel Gyamfi Amoako ◽  
Akebe Luther King Abia ◽  
Sabiha Yusuf Essack

A growing concern regarding the use of animal manure as fertilizer is the contamination of soil, plants, and the environment with a variety of antibiotic-resistant and pathogenic bacteria. This study quantified and characterized the antibiotic resistance profiles of Escherichia coli in soil before and after chicken litter application to determine the impact of manure on the soil resistome. Litter and soil samples were collected from a sugarcane field before and after litter application. E. coli was isolated and quantified using the Colilert®-18/Quanti-tray® 2000 and 10 randomly selected isolates from the positive wells of each Quanti-tray were putatively identified on eosin methylene blue agar. Real-time PCR was used to confirm the isolates by targeting the uidA gene. Antibiotic susceptibility test against 18 antibiotics was conducted using the disk diffusion method, and the multiple antibiotic resistance index was calculated. Soil amendment with chicken litter significantly increased the number of antibiotic-resistant E. coli in the soil. Among the 126 E. coli isolates purified from all the samples, 76% showed resistance to at least one antibiotic, of which 54.2% were multidrug-resistant (MDR). The highest percentage resistance was to tetracycline (78.1%), with the least percentage resistance (3.1%) to imipenem, tigecycline, and gentamicin. The isolates also showed resistance to chloramphenicol (63.5%), ampicillin (58.3%), trimethoprim-sulfamethoxazole (39.6%), cefotaxime (30.2%), ceftriaxone (26.0%), cephalexin (20.8%), cefepime (11.5%), amoxicillin-clavulanic acid (11.5%), cefoxitin (10.4%), Nalidixic acid (9.4%), amikacin (6.3%), and ciprofloxacin (4.2%). Of the 54.2% (52/96) MDR, the highest number was isolated from the litter-amended soil (61.5%) and the least isolates from soil samples collected before litter application (1.9%). The relatively higher mean MAR index of the litter-amended soil (0.14), compared to the soil before the amendment (0.04), suggests soil pollution with antibiotic-resistant E. coli from sources of high antibiotic use. E. coli could only be detected in the soil up to 42 days following manure application, making it a suitable short-term indicator of antibiotic resistance contamination. Notwithstanding its relatively short detectability/survival, the application of chicken litter appeared to transfer antibiotic-resistant E. coli to the soil, enhancing the soil resistome and highlighting the consequences of such agricultural practices on public health.

2020 ◽  
Vol 4 (3) ◽  
pp. 323-327
Author(s):  
Mamunu Abdulkadir SULAIMAN ◽  
H.S Muhammad ◽  
Aliyu Muhammad Sani ◽  
Aminu Ibrahim ◽  
Ibrahim Muhammad Hussain ◽  
...  

Multidrug resistance (MDR) exhibited by some strains of Escherichia coli may be due to acquiring mobile genetic element (R-plasmid) by the bacteria, or intrinsically induced by inappropriate use of antibiotics by the hosts.  Infection by such strains may result to prolonged illness and greater risk of death. The study evaluated the impact of curing on antibiotic resistance on selected clinical isolates of E. coli. Twenty clinical isolates of E. coli from our previous studies were re-characterized using conventional microbiological techniques. Antibiotic sensitivity testing was determined by disk diffusion method, MDR selected based on resistance to ≥ 2 classes of antibiotics. Multiple antibiotic resistance (MAR) index was determined as ratio of the number of antibiotic resisted to the total number of antibiotics tested and considered significant if ≥. 0.2. The isolates that showed significant MAR index were subjected to plasmid curing using acridine orange, thereafter, profiled for plasmid and the cured ones were re-tested against the antibiotics they initially resisted. Out of the 20 isolates, 19 (95%) were confirmed as E. coli, all (100%) of which were MDRs, which was highest against augmentin (78.9%) followed by amoxacillin (52.6%). However, after the plasmid curing only 6 (31.6%) out of the 19 isolates cured retained significant MAR index and the level of the significance had reduced drastically in 16 (84.2%) isolates. Conclusively, curing assay can completely eliminate R-plasmid acquired resistance. More studied on plasmid curing agents for possible augmentation of the agents into antibiotics may see the rise of successful antibiotic era again.


2012 ◽  
Vol 58 (9) ◽  
pp. 1084-1098 ◽  
Author(s):  
Laura E. Merchant ◽  
Heidi Rempel ◽  
Tom Forge ◽  
Tissa Kannangara ◽  
Shabtai Bittman ◽  
...  

The objective of this study was to characterize antimicrobial resistance and virulence determinants of Escherichia coli from soil amended with litter from 36-day-old broiler chickens ( Gallus gallus domesticus ) fed with diets supplemented with a variety of antimicrobial agents. Soil samples were collected from plots before and periodically after litter application in August to measure E. coli numbers. A total of 295 E. coli were isolated from fertilized soil samples between August and March. Antibiotic susceptibility was determined by Sensititre, and polymerase chain reaction was performed to detect the presence of resistance and virulence genes. The results confirmed that E. coli survived and could be quantified by direct plate count for at least 7 months in soil following litter application in August. The effects of feed supplementation were observed on E. coli numbers in November and January. Among the 295 E. coli, the highest antibiotic resistance level was observed against tetracycline and β-lactams associated mainly with the resistance genes tetB and blaCMY-2, respectively. Significant treatment effects were observed for phylogenetic groups, antibiotic resistance profiles, and virulence gene frequencies. Serotyping, phylogenetic grouping, and pulsed-field gel electrophoresis confirmed that multiple-antibiotic-resistant and potentially pathogenic E. coli can survive in soil fertilized with litter for several months regardless of antimicrobials used in the feed.


Author(s):  
Fabrizio Pantanella ◽  
Itziar Lekunberri ◽  
Antonella Gagliardi ◽  
Giuseppe Venuto ◽  
Alexandre Sànchez-Melsió ◽  
...  

Background: Wastewater treatment plants (WWTPs) are microbial factories aimed to reduce the amount of nutrients and pathogenic microorganisms in the treated wastewater before its discharge into the environment. We studied the impact of urban WWTP effluents on the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant Escherichia coli (AR-E. coli) in the last stretch of two rivers (Arrone and Tiber) in Central Italy that differ in size and flow volume. Methods: Water samples were collected in three seasons upstream and downstream of the WWTP, at the WWTP outlet, and at sea sites near the river mouth, and analyzed for the abundance of ARGs by qPCR and AR-E. coli using cultivation followed by disk diffusion assays. Results: For all studied genes (16S rRNA, intI1, sul1, ermB, blaTEM, tetW and qnrS), absolute concentrations were significantly higher in the Tiber than in the Arrone at all sampling sites, despite their collection date, but the prevalence of target ARGs within bacterial communities in both rivers was similar. The absolute concentrations of most ARGs were also generally higher in the WWTP effluent with median levels between log 4 and log 6 copies per ml but did not show differences along the studied stretches of rivers. Statistically significant site effect was found for E. coli phenotypic resistance to tetracycline and ciprofloxacin in the Arrone but not in the Tiber. Conclusions: In both rivers, diffuse or point pollution sources other than the studied WWTP effluents may account for the observed resistance pattern, although the Arrone appears as more sensitive to the wastewater impact considering its lower flow volume.


Author(s):  
Reza Ranjbar ◽  
Maryam Zeynali ◽  
Nooshin Sohrabi ◽  
Asghar Ali Kamboh

BACKGROUND <br />Hospital wastewaters may contain antibiotic resistant bacteria such as Escherichia coli. These E. coli harbor integron genes that are responsible for antibiotic resistance. The purpose of the current study was to evaluate the frequency of class 1 and 2 integrons in environmental antibiotic resistant E. coli strains isolated from the hospital wastewaters in Tehran, Iran.<br /><br />METHODS<br />As a descriptive cross-sectional study, this research was performed from April to September 2015 on hospital wastewaters in Tehran. Bacterial isolation and identification was performed by standard biochemical and bacteriological procedures. Susceptibility testing was done by employing the disk diffusion method using different antibiotics. Total DNAs were extracted to evaluate the presence of class 1 and 2 integrons by using the polymerase chain reaction (PCR) method with specific primers. <br /><br />RESULTS<br />Fifty E. coli strains were isolated and identified from the wastewaters of 25 hospitals in Tehran. The phenotype results showed that 46 isolates (92%) were resistant to at least one antibiotic and 27 isolates (54%) were multidrug resistant. PCR showed that 35 (70%) and 20 (40%) of the isolates had class 1 and 2 integrons respectively and 14 isolates (28%) had both class 1 and class 2 integrons.<br /><br />CONCLUSION<br />This study has shown a considerable presence of class 1 and class 2 integrons in E. coli strains isolated from hospital wastewaters in Tehran. Proper antibiotics prescription and appropriate hospital wastewater treatment can prevent resistance genes in E. coli from circulating in the environment.


2020 ◽  
Vol 13 (6) ◽  
pp. 1037-1044
Author(s):  
Mona A. A. AbdelRahman ◽  
Heba Roshdy ◽  
Abdelhafez H. Samir ◽  
Engy A. Hamed

Aim: Antimicrobial resistance is a global health threat. This study investigated the prevalence of Escherichia coli in imported 1-day-old chicks, ducklings, and turkey poults. Materials and Methods: The liver, heart, lungs, and yolk sacs of 148 imported batches of 1-day-old flocks (chicks, 45; ducklings, 63; and turkey poults, 40) were bacteriologically examined for the presence of E. coli. Results: We isolated 38 E. coli strains from 13.5%, 6.7%, and 5.4% of imported batches of 1-day-old chicks, ducklings, and turkey poults, respectively. They were serotyped as O91, O125, O145, O78, O44, O36, O169, O124, O15, O26, and untyped in the imported chicks; O91, O119, O145, O15, O169, and untyped in the imported ducklings; and O78, O28, O29, O168, O125, O158, and O115 in the imported turkey poults. The E. coli isolates were investigated for antibiotic resistance against 16 antibiotics using the disk diffusion method and were found resistant to cefotaxime (60.5%), nalidixic acid (44.7%), tetracycline (44.7%), and trimethoprim-sulfamethoxazole (42.1%). The distribution of extended-spectrum β-lactamase (ESBL) and ampC β-lactamase genes was blaTEM (52.6%), blaSHV (28.9%), blaCTX-M (39.5%), blaOXA-1 (13.1%), and ampC (28.9%). Conclusion: Imported 1-day-old poultry flocks may be a potential source for the dissemination of antibiotic-resistant E. coli and the ESBL genes in poultry production.


Author(s):  
Mojtaba Bonyadian ◽  
Sara Barati ◽  
Mohammad Reza Mahzounieh

Background and Objectives: Escherichia coli is a common enteric pathogen of human and livevestock. Antibiotic resis- tance is the main concern of public health. The aim of this study was to detect this bacterium in stool samples of diarrheal patients and identify the phenotypic and genotypic characterizations of antibiotic-resistant isolates such as dfrA1, sul1, citm, tetA, qnr, aac(3)-IV in Shahrekord. Materials and Methods: Two hundred fifty diarrheal stool samples from patients were collected. Microbiological and biochemical examinations were done to detect E. coli. Phenotypic and genotypic antibiotic resistance of the isolates were determined using dick diffusion method and polymerase chain reaction (PCR), respectively. Results: Among 114 E. coli isolates, the least resistance was for gentamicin (0%) and the most resistance was for trimetho- prim (79.8%). The resistance to sulfamethoxazole, ciprofloxacin, ampicillin, and tetracycline were 71.05%, 10.5%, 52.63%, and 3.5% respectively. The results of PCR assay revealed that 10 isolates contain sul1, 49 isolates harbor citm, 8 isolates tetA, 36 isolates dfrA1, 11 isolates qnr genes but there was no isolate with aac(3)-IV gene. In comparison between phenotypic and genotypic of the isolates revealed that citm, tetA, dfrA1, qnr, sul1, aac(3)-IV genes covered 42.98%, 7.01%, 31.57%, 9.64%, 8.7%, 0% of the antibiotic resistance, respectively. Conclusion: Our results revealed that all isolates harbor one or more antibiotic resistance genes and that the PCR is a fast practical and appropriate method to determine the presence of antibiotic resistance genes.


2020 ◽  
Vol 18 (6) ◽  
pp. 879-889 ◽  
Author(s):  
Ryo Honda ◽  
Chihiro Tachi ◽  
Mana Noguchi ◽  
Ryoko Yamamoto-Ikemoto ◽  
Toru Watanabe

Abstract This study investigated the impact of each treatment stage of the activated sludge process on the fate of antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs). Wastewater and sludge samples were collected monthly at each stage of a commercial-scale WWTP. After 20–25 strains of indicator Escherichia coli were isolated from each sample on Chromocult Coliform Agar, antibiotic resistance of the isolates to amoxicillin (AMX), ciprofloxacin (CIP), norfloxacin (NFX), kanamycin (KM), sulfamethoxazole/trimethoprim (ST) and tetracycline (TC) were tested with the Kirby–Bauer disk diffusion method. As a result, activated sludge in the aeration tank and return sludge had higher abundance of antibiotic resistant E. coli than influent wastewater and secondary treatment effluent. AMX resistant E. coli was enriched in return sludge at the secondary clarifier. Higher temperature was also likely to cause an increase of AMX resistant E. coli in sludge. The antibiotic resistance profile of E. coli in secondary treatment effluent was more dependent on activated sludge than influent wastewater. These results suggested that activated sludge in WWTP possibly serves as a reservoir of ARB, and that behavior of ARB in WWTP differs by antibiotic classes.


2004 ◽  
Vol 48 (10) ◽  
pp. 3996-4001 ◽  
Author(s):  
Yolanda Sáenz ◽  
Laura Briñas ◽  
Elena Domínguez ◽  
Joaquim Ruiz ◽  
Myriam Zarazaga ◽  
...  

ABSTRACT Seventeen multiple-antibiotic-resistant nonpathogenic Escherichia coli strains of human, animal, and food origins showed a wide variety of antibiotic resistance genes, many of them carried by class 1 and class 2 integrons. Amino acid changes in MarR and mutations in marO were identified for 15 and 14 E. coli strains, respectively.


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


Sign in / Sign up

Export Citation Format

Share Document