scholarly journals Urban Environments Aid Invasion of Brown Widows (Theridiidae: Latrodectus geometricus) in North America, Constraining Regions of Overlap and Mitigating Potential Impact on Native Widows

2021 ◽  
Vol 9 ◽  
Author(s):  
Melissa Sadir ◽  
Katharine A. Marske

Urbanization is a major cause of biotic homogenization and habitat fragmentation for native communities. However, the role of urbanization on the success of biological invasions on a continental scale has yet to be explored. Urbanization may facilitate the establishment success of invasive species by minimizing niche differentiation between native and invaded ranges. In such cases, we might expect anthropogenic variables to have stronger influence on the geographic distribution of invasive compared to native populations. In this study, we use ecological niche modeling to define the distribution of non-native brown widow spider (Latrodectus geometricus) and three native black widows (L. hespersus, L. mactans, L. variolus) in North America and gauge the importance of urbanization on the geographic ranges of widows at a continental scale. We also quantify the geographic overlap of L. geometricus with each native widow to assess potential species and regions at risk of ecological impact. Consistent with our hypothesis, we find that the distribution of L. geometricus is strongly constrained to urban environments, while native widow distributions are more strongly driven by climatic factors. These results show that urbanization plays a significant role in facilitating the success of invasion, weakening the significance of climate on the realized niche in its invaded range.

Author(s):  
Marzena Niemczyk ◽  
Daniel J. Chmura ◽  
Jarosław Socha ◽  
Tomasz Wojda ◽  
Piotr Mroczek ◽  
...  

AbstractThe contribution of Douglas-fir (Df) to European forests is likely to increase as the species is a potential adaptation option to climate change. In this study, we investigated growth and survival of Df seed sources to fill a knowledge gap regarding recommendations for the future use of Df provenances in Poland. Our experimental test site represents the most continental climate among all Df trials installed in the IUFRO 1966–67 test series in Europe. At this unique single site, we evaluated the performance of 46 Df provenances from North America, and nine local landraces of unknown origin. Repeated measurements of tree diameter, height, and volume were analysed, to age 48, representing integrated responses to geographic and climatic conditions. Significant variation in survival and productivity-related traits were found, with the interior Df provenances performing best, in contrast to previous European reports. The higher survivability and volume of the interior provenances resulted from their superior frost resistance. The low precipitation seasonality at the location of seed origin provided an additional advantage to the trees at the test site. Geographic and climatic factors of seed origin explained most of the variation in productivity (77 and 64%, respectively). The tested landraces exhibited diverse performance, implying that naturalized local seed sources in Poland need improvement and perhaps enrichment with new genetic material from North America, while considering geography and climate. Assisted migration programs should consider the limitations imposed by both frost and drought events in guiding future Df selections for continental climates. Further field testing, early greenhouse screening and DNA testing are also recommended.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriel Parra-Henao ◽  
Laura C. Suárez-Escudero ◽  
Sebastián González-Caro

Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasiteTrypanosoma cruzi,which causes Chagas disease.This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus,Rhodnius pallescens,R. prolixus, andTriatoma maculata) were analyzed.The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution wereP. geniculatus,R. pallescens, andR. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.


2018 ◽  
Vol 115 (49) ◽  
pp. E11495-E11504 ◽  
Author(s):  
Paul R. Martin ◽  
Frances Bonier

Urbanization represents an extreme transformation of more natural systems. Populations of most species decline or disappear with urbanization, and yet some species persist and even thrive in cities. What determines which species persist or thrive in urban habitats? Direct competitive interactions among species can influence their distributions and resource use, particularly along gradients of environmental challenge. Given the challenges of urbanization, similar interactions may be important for determining which species persist or thrive in cities; however, their role remains poorly understood. Here, we use a global dataset to test among three alternative hypotheses for how direct competitive interactions and behavioral dominance may influence the breeding occurrence of birds in cities. We find evidence to support the competitive interference hypothesis: behaviorally dominant species were more widespread in urban habitats than closely related subordinate species, but only in taxa that thrive in urban environments (hereafter, urban adapted), and only when dominant and subordinate species overlapped their geographic ranges. This result was evident across diverse phylogenetic groups but varied significantly with a country’s level of economic development. Urban-adapted, dominant species were more widespread than closely related subordinate species in cities in developed, but not developing, countries; countries in economic transition showed an intermediate pattern. Our results provide evidence that competitive interactions broadly influence species responses to urbanization, and that these interactions have asymmetric effects on subordinate species that otherwise could be widespread in urban environments. Results further suggest that economic development might accentuate the consequences of competitive interactions, thereby reducing local diversity in cities.


1931 ◽  
Vol 68 (1) ◽  
pp. 15-24
Author(s):  
J. S. Lee

In a previous paper published in the Geological Magazine, the writer made an attempt to discuss the mechanism of earth movement on a continental scale purely from a tectonic point of view. The problem is so vast and involved that some of the vital points were hardly touched upon, partly because of lack of space and partly of literature. The arrival of the admirable works of Dr. A. du Toit and Dr. E. Krenkel has enabled the writer to deduce the mechanism of the movements of South Africa directly from its tectonic features, which process is thought to be far more reliable than the type of argument used in the previous case although the results arrived at are essentially the same. The earlier movements in North America are now seen to furnish evidence of the same type of mechanism as that which staged the later movements. An epsilon type of structure has been recognized in Eastern China, which was then described as a mere arc. The problem of the distribution of concealed coalfields in England was in the previous paper barely touched upon. It is now proposed to consider some of the critical points bearing on the problem.


2021 ◽  
Vol 25 (1) ◽  
pp. 94-107
Author(s):  
M. C. A. Torbenson ◽  
D. W. Stahle ◽  
I. M. Howard ◽  
D. J. Burnette ◽  
D. Griffin ◽  
...  

Abstract Season-to-season persistence of soil moisture drought varies across North America. Such interseasonal autocorrelation can have modest skill in forecasting future conditions several months in advance. Because robust instrumental observations of precipitation span less than 100 years, the temporal stability of the relationship between seasonal moisture anomalies is uncertain. The North American Seasonal Precipitation Atlas (NASPA) is a gridded network of separately reconstructed cool-season (December–April) and warm-season (May–July) precipitation series and offers new insights on the intra-annual changes in drought for up to 2000 years. Here, the NASPA precipitation reconstructions are rescaled to represent the long-term soil moisture balance during the cool season and 3-month-long atmospheric moisture during the warm season. These rescaled seasonal reconstructions are then used to quantify the frequency, magnitude, and spatial extent of cool-season drought that was relieved or reversed during the following summer months. The adjusted seasonal reconstructions reproduce the general patterns of large-scale drought amelioration and termination in the instrumental record during the twentieth century and are used to estimate relief and reversals for the most skillfully reconstructed past 500 years. Subcontinental-to-continental-scale reversals of cool-season drought in the following warm season have been rare, but the reconstructions display periods prior to the instrumental data of increased reversal probabilities for the mid-Atlantic region and the U.S. Southwest. Drought relief at the continental scale may arise in part from macroscale ocean–atmosphere processes, whereas the smaller-scale regional reversals may reflect land surface feedbacks and stochastic variability.


2019 ◽  
Vol 20 (4) ◽  
pp. 751-771 ◽  
Author(s):  
Richard Seager ◽  
Jennifer Nakamura ◽  
Mingfang Ting

AbstractMechanisms of drought onset and termination are examined across North America with a focus on the southern Plains using data from land surface models and regional and global reanalyses for 1979–2017. Continental-scale analysis of covarying patterns reveals a tight coupling between soil moisture change over time and intervening precipitation anomalies. The southern Great Plains are a geographic center of patterns of hydrologic change. Drying is induced by atmospheric wave trains that span the Pacific and North America and place northerly flow anomalies above the southern Plains. In the southern Plains winter is least likely, and fall most likely, for drought onset and spring is least likely, and fall or summer most likely, for drought termination. Southern Plains soil moisture itself, which integrates precipitation over time, has a clear relationship to tropical Pacific sea surface temperature (SST) anomalies with cold conditions favoring dry soils. Soil moisture change, however, though clearly driven by precipitation, has a weaker relation to SSTs and a strong relation to internal atmospheric variability. Little evidence is found of connection of drought onset and termination to driving by temperature anomalies. An analysis of particular drought onsets and terminations on the seasonal time scale reveals commonalities in terms of circulation and moisture transport anomalies over the southern Plains but a variety of ways in which these are connected into the large-scale atmosphere and ocean state. Some onsets are likely to be quite predictable due to forcing by cold tropical Pacific SSTs (e.g., fall 2010). Other onsets and all terminations are likely not predictable in terms of ocean conditions.


Paleobiology ◽  
2009 ◽  
Vol 35 (4) ◽  
pp. 587-611 ◽  
Author(s):  
Kaitlin Clare Maguire ◽  
Alycia L. Stigall

The subfamily Equinae in the Great Plains region of North America underwent a dramatic radiation and subsequent decline as climate changed from warm and humid in the middle Miocene to cooler and more arid conditions during the late Miocene. Here we use ecological niche modeling (ENM), specifically the GARP (Genetic Algorithm using Rule-set Prediction) modeling system, to reconstruct the geographic distribution of individual species during two time slices from the middle Miocene through early Pliocene. This method combines known species occurrence points with environmental parameters inferred from sedimentological variables to model each species' fundamental niche. The geographic range of each species is then predicted to occupy the geographic area within the study region wherever the set of environmental parameters that constrain the fundamental niche occurs. We analyze changes in the predicted distributions of individual species between time slices in relation to Miocene/Pliocene climate change. Specifically, we examine and compare distribution patterns for two time slices that span the period from the mid-Miocene (Barstovian) Climatic Optimum into the early Pliocene (Blancan) to determine whether habitat fragmentation led to speciation within the clade and whether species survival was related to geographic range size. Patchy geographic distributions were more common in the middle Miocene when speciation rates were high. During the late Miocene, when speciation rates were lower, continuous geographic ranges were more common. Equid species tracked their preferred habitat within the Great Plains region as well as regionally throughout North America. Species with larger predicted ranges preferentially survived the initial cooling event better than species with small geographic ranges. As climate continued to deteriorate in the late Miocene, however, range size became irrelevant to survival, and extinction rates increased for species of all range sizes. This is the first use of ENM and GARP in the continental fossil record. This powerful quantitative biogeographic method offers great promise for studies of other taxa and geologic intervals.


Sign in / Sign up

Export Citation Format

Share Document