scholarly journals Exploring the Differences in Molecular Mechanisms and Key Biomarkers Between Membranous Nephropathy and Lupus Nephritis Using Integrated Bioinformatics Analysis

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhaocheng Dong ◽  
Haoran Dai ◽  
Wenbin Liu ◽  
Hanxue Jiang ◽  
Zhendong Feng ◽  
...  

Background: Both membranous nephropathy (MN) and lupus nephritis (LN) are autoimmune kidney disease. In recent years, with the deepening of research, some similarities have been found in the pathogenesis of these two diseases. However, the mechanism of their interrelationship is not clear. The purpose of this study was to investigate the differences in molecular mechanisms and key biomarkers between MN and LN.Method: The expression profiles of GSE99325, GSE99339, GSE104948 and GSE104954 were downloaded from GEO database, and the differentially expressed genes (DEGs) of MN and LN samples were obtained. We used Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for enrichment analysis of DEGs. A protein-protein interaction (PPI) network of DEGs was constructed using Metascape. We filtered DEGs with NetworkAnalyst. Finally, we used receiver operating characteristic (ROC) analysis to identify the most significant DEGs for MN and LN.Result: Compared with LN in the glomerulus, 14 DEGs were up-regulated and 77 DEGs were down-regulated in MN. Compared with LN in renal tubules, 21 DEGs were down-regulated, but no up-regulated genes were found in MN. According to the result of GO and KEGG enrichment, PPI network and Networkanalyst, we screened out six genes (IFI6, MX1, XAF1, HERC6, IFI44L, IFI44). Interestingly, among PLA2R, THSD7A and NELL1, which are the target antigens of podocyte in MN, the expression level of NELL1 in MN glomerulus is significantly higher than that of LN, while there is no significant difference in the expression level of PLA2R and THSD7A.Conclusion: Our study provides new insights into the pathogenesis of MN and LN by analyzing the differences in gene expression levels between MN and LN kidney samples, and is expected to be used to prepare an animal model of MN that is more similar to human.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 623.1-623
Author(s):  
C. Wang ◽  
S. X. Zhang ◽  
S. Song ◽  
J. Qiao ◽  
R. Zhao ◽  
...  

Background:Nephritis is one of the predominant causes of morbidity and mortality in patients with lupus1 2.The lack of understanding regarding the molecular mechanisms of lupus nephritis(LN) hinders the development of specific targeted therapy for this progressive disease3.Objectives:In this study, we use bioinformatics method to analyze the genes involved in regulating the potential pathogenesis of LN.Methods:The expression profile of LN(GSE104948 and GSE32591) was obtained from the GEO database.GSE104948 was a memory chip, which included 32 LN glomerular biopsy tissues and 3 glomerular tissues from living donors.GSE32591 dataset included 32 LN glomerular biopsy tissues and 15 glomerular tissues from living donors. The Oligo package was used to process the data to obtain the expression matrix files of all the related genes.P<0.05 and |log2(FC)|>2 were setted as cut-off criteria for the DEGs.Ggplot2, heatmap packages were used to DEGs visualization. Metascape online tool was used to annotating DEGs for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis performed.We used STRING online database to construct protein-protein interaction (PPI) network. Hub genes were identified by Cytoscape.Results:In differential expression analysis,357 DEGs were identified,including 248 up-regulated genes and 109 down-regulated genes (Figure 1A,B).GO enrichment showed that these DEGs were primarily enriched in biological pathways, cell localization and molecular function and revealed that LN-related genes mainly involved in immune response.KEGG pathway annotation enrichment analysis revealed these DEGs were closely associated with Staphylococcus aureus infection,Complement and coagulation cascades (Figure 1D). Fourteen hub genes(IFT3,IRF7,OAS3,GBP2,RSAD2,MX1,IFIT2,IFI6,MX2,ISF15,IFIT1,QAS2,OASL,OAS1) were identified from PPI network (Figure 1C,E).Conclusion:Illuminating the molecular mechanisms of LN was help for deep understanding of LN.References:[1]Song J, Zhao L, Li Y. Comprehensive bioinformatics analysis of mRNA expression profiles and identification of a miRNA-mRNA network associated with lupus nephritis. Lupus 2020;29(8):854-61. doi: 10.1177/0961203320925155 [published Online First: 2020/05/22].[2]Yao F, Sun L, Fang W, et al. HsamiR3715p inhibits human mesangial cell proliferation and promotes apoptosis in lupus nephritis by directly targeting hypoxiainducible factor 1alpha. Mol Med Rep 2016;14(6):5693-98. doi: 10.3892/mmr.2016.5939 [published Online First: 2016/11/24].[3]Dall’Era M. Treatment of lupus nephritis: current paradigms and emerging strategies. Curr Opin Rheumatol 2017;29(3):241-47. doi: 10.1097/BOR.0000000000000381 [published Online First: 2017/02/17].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhua Lv ◽  
Yanqing Liu ◽  
Yueqiang Wang ◽  
Fanrong Kong ◽  
Qiuxiang Pang ◽  
...  

Abstract Background This study aimed to explore the molecular mechanisms of tibolone treatment in postmenopausal women. Methods The gene set enrichment profile, GSE12446, which includes 9 human endometrial samples from postmenopausal women treated with tibolone (tibolone group) and 9 control samples (control group), was downloaded from GEO database for analysis. Differentially expressed genes (DEGs) in tibolone vs. control groups were identified and then used for function and pathway enrichment analysis. Protein–protein interaction (PPI) network and module analyses were also performed. Finally, drug–target interaction was predicted for genes in modules, and then were validated in Pubmed. Results A total of 238 up-regulated DEGs and 72 down-regulated DEGs were identified. These DEGs were mainly enriched in various biological processed and pathways, such as cilium movement (e.g., CCDC114 and DNAI2), calcium ion homeostasis, regulation of hormone levels and complement/coagulation cascades. PPI network contained 368 interactions and 166 genes, of which IGF1, DNALI1, CCDC114, TOP2A, DNAH5 and DNAI2 were the hue genes. A total of 96 drug–gene interactions were obtained, including 94 drugs and eight genes. TOP2A and HTR2B were found to be targets of 28 drugs and 38 drugs, respectively. Among the 94 obtained drugs, only 12 drugs were reported in studies, of which 7 drugs (e.g., epirubicin) were found to target TOP2A. Conclusions CCDC114 and DNAI2 might play important roles in tibolone-treated postmenopausal women via cilium movement function. TOP2A might be a crucial target of tibolone in endometrium of postmenopausal women.


2021 ◽  
Vol 24 (5-6) ◽  
pp. 267-279
Author(s):  
Xianyang Zhu ◽  
Wen Guo

<b><i>Background:</i></b> This study aimed to screen and validate the crucial genes involved in osteoarthritis (OA) and explore its potential molecular mechanisms. <b><i>Methods:</i></b> Four expression profile datasets related to OA were downloaded from the Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) from 4 microarray patterns were identified by the meta-analysis method. The weighted gene co-expression network analysis (WGCNA) method was used to investigate stable modules most related to OA. In addition, a protein-protein interaction (PPI) network was built to explore hub genes in OA. Moreover, OA-related genes and pathways were retrieved from Comparative Toxicogenomics Database (CTD). <b><i>Results:</i></b> A total of 1,136 DEGs were identified from 4 datasets. Based on these DEGs, WGCNA further explored 370 genes included in the 3 OA-related stable modules. A total of 10 hub genes were identified in the PPI network, including <i>AKT1</i>, <i>CDC42</i>, <i>HLA-DQA2</i>, <i>TUBB</i>, <i>TWISTNB</i>, <i>GSK3B</i>, <i>FZD2</i>, <i>KLC1</i>, <i>GUSB</i>, and <i>RHOG</i>. Besides, 5 pathways including “Lysosome,” “Pathways in cancer,” “Wnt signaling pathway,” “ECM-receptor interaction” and “Focal adhesion” in CTD and enrichment analysis and 5 OA-related hub genes (including <i>GSK3B, CDC42, AKT1, FZD2</i>, and <i>GUSB</i>) were identified. <b><i>Conclusion:</i></b> In this study, the meta-analysis was used to screen the central genes associated with OA in a variety of gene expression profiles. Three OA-related modules (green, turquoise, and yellow) containing 370 genes were identified through WGCNA. It was discovered through the gene-pathway network that <i>GSK3B, CDC42, AKT1, FZD2</i>, <i>and GUSB</i> may be key genes related to the progress of OA and may become promising therapeutic targets.


2020 ◽  
Author(s):  
Guoliang Wang ◽  
Jiali Zheng ◽  
Lu He ◽  
YaoYu Xiang ◽  
Yanlin Li

Abstract Background With the in-depth exploration of the gene regulation network associated with the pathogenesis of osteoarthritis (OA), lncRNA has been found to play a major role in regulating the development of osteoarthritis. In this study, the expressions of miRNAs and lncRNAs in chondrocytes (2 days) of SDF-1-induced articular chondrocyte degeneration model and in normal chondrocytes were detected and the difference between them was visualized. The bioinformatics analysis was performed in parallel to elucidate the interactions between miRNAs and protein molecules. Results It was found that 186 lncRNA changes had significant statistical differences, of which 88 lncRNA were up-regulated and 98 lncRNA were down-regulated. A total of 684 miRNA had significant statistical differences in their expression changes. Gene Ontology and Kyoto Encyclopedia of Genes were performed for the gene set enrichment analysis to determine the key biological processes and pathways. The protein-protein interaction (PPI) network indicated that CXCL10, ISG15, MYC, MX1, OASL, FIICT1, RSAD2, MX2, IFI44, and LBST2 are the ten core genes. The PPI network identified the most important functional modules to elucidate the differential expression of miRNA. Conclusions These data may provide new insights into the molecular mechanisms of osteoarthritis chondrocyte degeneration, and the identification of lncRNA and miRNA can provide potential therapeutic targets for the diagnosis and differential diagnosis of osteoarthritis.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yiran Li ◽  
Hongyan Zhang ◽  
Jinyan Shao ◽  
Jindong Chen ◽  
Tiancheng Zhang ◽  
...  

Purpose. Sepsis becomes the main death reason in hospitals with rising incidence, causing a growing economic and medical burden. However, the genes related to the pathogenesis and prognosis of sepsis are still unclear, which is a problem that needs to be solved urgently. Materials and Methods. Gene expression profiles of GSE69528 were obtained from the National Center for Biotechnology Information. Limma software package got employed to search for differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used for enrichment analysis. Protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results. We screened 101 DEGs, containing 81 upregulated DEGs and 20 downregulated DEGs. GO analysis demonstrated that the upregulated DEGs were chiefly concentrated in negative regulation of response to interferon-gamma and regulation of granulocyte differentiation. KEGG analysis revealed that the pathways of upregulated DEGs were concentrated in prion diseases, complement and coagulation cascades, and Staphylococcus aureus infection. The PPI network constructed by upregulated DEGs contained 67 nodes (proteins) and 110 edges (interactions). Analysis of bioinformatics results showed that CEACAM8, MPO, and RETN were hub genes of sepsis. Conclusion. Our analysis reveals a series of signal pathways and key genes related to the mechanism of sepsis, which are promising biotargets and biomarkers of sepsis.


Lupus ◽  
2020 ◽  
Vol 29 (8) ◽  
pp. 854-861
Author(s):  
Jianbo Song ◽  
Liqin Zhao ◽  
Yuanping Li

Objective Lupus nephritis (LN) is one of the serious complications of systemic lupus erythematosus. The aim of this study was to identify core genes and pathways involved in the pathogenesis of LN. Methods We screened differentially expressed genes (DEGs) in LN patients using mRNA expression profile data from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DEGs was performed utilizing the Database for annotation, Visualization and Integrated Discovery. Target genes with differentially expressed miRNAs (DEMIs) were predicted using the miRTarBase database, and the intersection between these target genes and DEGs was selected to be studied further. Results In total, 107 common DEGs (CDEGs) were identified from the Tub_LN group and Glom_LN group, and 66 DEMIs were identified. Fifty-three hub genes and two significant modules were identified from the protein–protein interaction (PPI) network, and a miRNA–mRNA network was constructed. The CDEGs, module genes in the PPI network and genes intersecting with the CDEGs and target genes of DEMIs were all associated with the PI3K-Akt signalling pathway. Conclusion In summary, this study reveals some crucial genes and pathways potentially involving in the pathogenesis of LN. These findings provide a new insight for the research and treatment of LN.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weina Lu ◽  
Ran Ji

Abstract Background and aims Acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) is one of the most common acute thoracopathy with complicated pathogenesis in ICU. The study is to explore the differentially expressed genes (DEGs) in the lung tissue and underlying altering mechanisms in ARDS. Methods Gene expression profiles of GSE2411 and GSE130936 were available from GEO database, both of them included in GPL339. Then, an integrated analysis of these genes was performed, including gene ontology (GO) and KEGG pathway enrichment analysis in DAVID database, protein–protein interaction (PPI) network construction evaluated by the online database STRING, Transcription Factors (TFs) forecasting based on the Cytoscape plugin iRegulon, and their expression in varied organs in The Human Protein Atlas. Results A total of 39 differential expressed genes were screened from the two datasets, including 39 up-regulated genes and 0 down-regulated genes. The up-regulated genes were mainly enriched in the biological process, such as immune system process, innate immune response, inflammatory response, and also involved in some signal pathways, including cytokine–cytokine receptor interaction, Salmonella infection, Legionellosis, Chemokine, and Toll-like receptor signal pathway with an integrated analysis. GBP2, IFIT2 and IFIT3 were identified as hub genes in the lung by PPI network analysis with MCODE plug-in, as well as GO and KEGG re-enrichment. All of the three hub genes were regulated by the predictive common TFs, including STAT1, E2F1, IRF1, IRF2, and IRF9. Conclusions This study implied that hub gene GBP2, IFIT2 and IFIT3, which might be regulated by STAT1, E2F1, IRF1, IRF2, or IRF9, played significant roles in ARDS. They could be potential diagnostic or therapeutic targets for ARDS patients.


2021 ◽  
Vol 22 (12) ◽  
pp. 6505
Author(s):  
Jishizhan Chen ◽  
Jia Hua ◽  
Wenhui Song

Applying mesenchymal stem cells (MSCs), together with the distraction osteogenesis (DO) process, displayed enhanced bone quality and shorter treatment periods. The DO guides the differentiation of MSCs by providing mechanical clues. However, the underlying key genes and pathways are largely unknown. The aim of this study was to screen and identify hub genes involved in distraction-induced osteogenesis of MSCs and potential molecular mechanisms. Material and Methods: The datasets were downloaded from the ArrayExpress database. Three samples of negative control and two samples subjected to 5% cyclic sinusoidal distraction at 0.25 Hz for 6 h were selected for screening differentially expressed genes (DEGs) and then analysed via bioinformatics methods. The Gene Ontology (GO) terms and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were investigated. The protein–protein interaction (PPI) network was visualised through the Cytoscape software. Gene set enrichment analysis (GSEA) was conducted to verify the enrichment of a self-defined osteogenic gene sets collection and identify osteogenic hub genes. Results: Three hub genes (IL6, MMP2, and EP300) that were highly associated with distraction-induced osteogenesis of MSCs were identified via the Venn diagram. These hub genes could provide a new understanding of distraction-induced osteogenic differentiation of MSCs and serve as potential gene targets for optimising DO via targeted therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


Sign in / Sign up

Export Citation Format

Share Document