scholarly journals T Cells Actively Infiltrate the White Matter of the Aging Monkey Brain in Relation to Increased Microglial Reactivity and Cognitive Decline

2021 ◽  
Vol 12 ◽  
Author(s):  
Katelyn V. Batterman ◽  
Payton E. Cabrera ◽  
Tara L. Moore ◽  
Douglas L. Rosene

Normal aging is characterized by declines in processing speed, learning, memory, and executive function even in the absence of neurodegenerative diseases such as Alzheimer's Disease (AD). In normal aging monkeys and humans, neuronal loss does not account for cognitive impairment. Instead, loss of white matter volume and an accumulation of myelin sheath pathology begins in middle age and is associated with cognitive decline. It is unknown what causes this myelin pathology, but it likely involves increased neuroinflammation in white matter and failures in oligodendrocyte function (maturation and repair). In frontal white matter tracts vulnerable to myelin damage, microglia become chronically reactive and secrete harmful pro-inflammatory cytokines. Despite being in a phagocytic state, these microglia are ineffective at phagocytosing accruing myelin debris, which directly inhibits myelin sheath repair. Here, we asked whether reported age-related increases in pro-inflammatory markers were accompanied by an adaptive immune response involving T cells. We quantified T cells with immunohistochemistry in the brains of 34 cognitively characterized monkeys and found an age-related increase in perivascular T cells that surround CNS vasculature. We found a surprising age-related increase in T cells that infiltrate the white matter parenchyma. In the cingulum bundle the percentage of these parenchymal T cells increased with age relative to those in the perivascular space. In contrast, infiltrating T cells were rarely found in surrounding gray matter regions. We assessed whether T cell infiltration correlated with fibrinogen extravasation from the vasculature as a measure of BBB leakiness and found no correlation, suggesting that T cell infiltration is not a result of passive extravasation. Importantly, the density of T cells in the cingulum bundle correlated with microglial reactivity and with cognitive impairment. This is the first demonstration that T cell infiltration of white matter is associated with cognitive decline in the normal aging monkey.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A52-A52
Author(s):  
Elen Torres ◽  
Stefani Spranger

BackgroundUnderstanding the interactions between tumor and immune cells is critical for improving current immunotherapies. Pre-clinical and clinical evidence has shown that failed T cell infiltration into lung cancer lesions might be associated with low responsiveness towards checkpoint blockade.1 For this reason, it is necessary to characterize not only the phenotype of T cells in tumor-bearing lungs but also their spatial location in the tumor microenvironment (TME). Multiplex immunofluorescence staining allows the simultaneous use of several cell markers to study the state and the spatial location of cell populations in the tissue of interest. Although this technique is usually applied to thin tissue sections (5 to 12 µm), the analysis of large tissue volumes may provide a better understanding of the spatial distribution of cells in relation to the TME. Here, we analyzed the number and spatial distribution of cytotoxic T cells and other immune cells in the TME of tumor-bearing lungs, using both 12 µm sections and whole-mount preparations imaged by confocal microscopy.MethodsLung tumors were induced in C57BL/6 mice by tail vein injection of a cancer cell line derived from KrasG12D/+ and Tp53-/- mice. Lung tissue with a diverse degree of T cell infiltration was collected after 21 days post tumor induction. Tissue was fixed in 4% PFA, followed by snap-frozen for sectioning. Whole-mount preparations were processed according to Weizhe Li et al. (2019) 2 for tissue clearing and multiplex volume imaging. T cells were labeled with CD8 and FOXP3 antibodies to identify cytotoxic or regulatory T cells, respectively. Tumor cells were labeled with a pan-Keratin antibody. Images were acquired using a Leica SP8 confocal microscope. FIJI3 and IMARIS were used for image processing.ResultsWe identified both cytotoxic and regulatory T cell populations in the TME using thin sections and whole-mount. However, using whole-mount after tissue clearing allowed us to better evaluate the spatial distribution of the T cell populations in relation to the tumor structure. Furthermore, tissue clearance facilitates the imaging of larger volumes using multiplex immunofluorescence.ConclusionsAnalysis of large lung tissue volumes provides a better understanding of the location of immune cell populations in relation to the TME and allows to study heterogeneous immune infiltration on a per-lesion base. This valuable information will improve the characterization of the TME and the definition of cancer-immune phenotypes in NSCLC.ReferencesTeng MW, et al., Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 2015;75(11): p. 2139–45.Li W, Germain RN, and Gerner MY. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat Protoc 2019;14(6): p. 1708–1733.Schindelin J, et al, Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9(7): p. 676–82.


2021 ◽  
Vol 9 (10) ◽  
pp. e003671
Author(s):  
Kim E Kortekaas ◽  
Saskia J Santegoets ◽  
Liselotte Tas ◽  
Ilina Ehsan ◽  
Pornpimol Charoentong ◽  
...  

BackgroundA profound insight into the immune landscape of vulvar squamous cell carcinoma (VSCC) is lacking. Here, an in-depth interrogation of T cell infiltration, local immune contexture, signaling pathways and checkpoint molecule expression was performed in early-stage and late-stage VSCC.MethodsThe type, location, and infiltration pattern of T cells were studied in 109 patients with primary VSCC FIGO stage I–III. RNA expression of genes involved in immune oncology and oncogenic signaling pathways was analyzed in 40 VSCC, matched for prognostic clinicopathological variables, analyzed for HPV and p53 status, and selected based on T cell infiltration.ResultsHigh intraepithelial infiltration with CD4 or CD8 T cells was associated with longer overall and recurrence-free survival and formed an independent prognostic factor, outperforming molecular subtype and stage of the disease. Strong T cell infiltrated VSCC displayed a coordinated immune response reflected by a positive association between T cells and different lymphocyte and myeloid cell subsets. The expression of genes involved in the migration of T cells and myeloid cells, T cell activation and costimulation, interferon (IFN)-γ signaling, cytotoxicity and apoptosis was higher than in low infiltrated tumors. An active immune signaling profile was observed in all inflamed, part of the altered-excluded and not in altered-immunosuppressed or deserted VSCC. While several checkpoint molecules were overexpressed, only PD-L1 expression displayed discriminatory ability and clinical usefulness. High PD-L1 expression was detected in all inflamed and ~60% of the altered-excluded VSCC.ConclusionAn active immune signaling profile is present in 35% of primary FIGO I–III VSCCs, suggesting potential responsiveness to neoadjuvant PD-1/PD-L1 immunotherapy.


2020 ◽  
Author(s):  
Victor Tkachev ◽  
James Kaminski ◽  
E. Lake Potter ◽  
Scott N. Furlan ◽  
Alison Yu ◽  
...  

ABSTRACTOne of the central challenges in the field of allo-immunity is deciphering the mechanisms driving T cells to infiltrate and subsequently occupy target organs to cause disease. The act of CD8-dominated T cell infiltration is critical to acute graft-versus-host disease (aGVHD), wherein donor T cells become activated, tissue-infiltrating and highly cytotoxic, causing wide-spread tissue damage after allogeneic hematopoietic stem cell transplant (allo-HCT). However, in human and non-human primate studies, deconvolving the transcriptional programs of newly recruited relative to resident memory T cells in the gastrointestinal (GI) tract has remained a challenge. In this study, we combined the novel technique of Serial Intravascular Staining (SIVS) with single-cell RNA-Seq (scRNA-seq) to enable detailed dissection of the tightly connected processes by which T cells first infiltrate tissues and then establish a pathogenic tissue residency program after allo-HCT in non-human primates. Our results have enabled the creation of a spatiotemporal map of the transcriptional drivers of CD8 T cell infiltration into the primary aGVHD target-organ, the GI tract. We identify the large and small intestines as the only two sites demonstrating allo-specific, rather than lymphdepletion-driven T cell infiltration. The donor CD8 T cells that infiltrate the GI tract demonstrate a highly activated, cytotoxic phenotype while simultaneously rapidly developing canonical tissue-resident memory (TRM) protein expression and transcriptional signatures, driven by IL-15/IL-21 signaling. Moreover, by combining SIVS and transcriptomic analysis, we have been able to work backwards from this pathogenic TRM programing, and, for the first time, identify a cluster of genes directly associated with tissue invasiveness, prominently including specific chemokines and adhesion molecules and their receptors, as well as a central cytoskeletal transcriptional node. The clinical relevance of this new tissue invasion signature was validated by its ability to discriminate the CD8 T cell transcriptome of patients with GI aGVHD. These results provide new insights into the mechanisms controlling tissue infiltration and pathogenic CD8 TRM transcriptional programing, uncovering critical transitions in allo-immune tissue invasion and destruction.One sentence summaryFlow cytometric and transcriptomic analysis reveals coordinated tissue-infiltration and tissue-residency programs driving gastrointestinal aGVHD.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1370-1377 ◽  
Author(s):  
Shin-ichiro Kagami ◽  
Hiroshi Nakajima ◽  
Kotaro Kumano ◽  
Kotaro Suzuki ◽  
Akira Suto ◽  
...  

Antigen-induced eosinophil recruitment into the airways of sensitized mice is mediated by CD4+ T cells and their cytokines, especially IL-5. In this study, we found that the antigen-induced airway eosinophilia was diminished in Stat5a-deficient (Stat5a−/−) mice and Stat5b-deficient (Stat5b−/−) mice. We also found that antigen-induced CD4+ T-cell infiltration and IL-5 production in the airways were diminished in Stat5a−/− mice and Stat5b−/− mice. Moreover, antigen-induced proliferation of splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice, suggesting that the generation of antigen-primed T cells may be compromised in Stat5a−/−mice and Stat5b−/− mice and this defect may account for the diminished antigen-induced T-cell infiltration into the airways. Interestingly, IL-4 and IL-5 production from anti-CD3–stimulated splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice. However, antigen-specific IgE and IgG1 production was diminished in Stat5a−/− mice but not in Stat5b−/− mice, whereas antigen-specific IgG2a production was increased in Stat5a−/− mice, suggesting the enhanced Th1 responses in Stat5a−/− mice. Finally, we found that eosinophilopoiesis induced by the administration of recombinant IL-5 was also diminished in Stat5a−/− mice and Stat5b−/− mice. Together, these results indicate that both Stat5a and Stat5b are essential for induction of antigen-induced eosinophil recruitment into the airways and that the defects in antigen-induced eosinophil recruitment in Stat5a−/− mice and Stat5b−/− mice result from both impaired IL-5 production in the airways and diminished IL-5 responsiveness of eosinophils.


2019 ◽  
Vol 40 (2) ◽  
pp. 424-446 ◽  
Author(s):  
Tanusree Sen ◽  
Pampa Saha ◽  
Rajaneesh Gupta ◽  
Lesley M. Foley ◽  
Tong Jiang ◽  
...  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3061-3061 ◽  
Author(s):  
Mark Selby ◽  
John Engelhardt ◽  
Li-Sheng Lu ◽  
Michael Quigley ◽  
Changyu Wang ◽  
...  

3061 Background: Interaction of immune checkpoint molecules PD-1 and CTLA-4 and their respective ligands attenuates antitumor T cell responses. In clinical studies, PD-1 blocking antibody (Ab) nivolumab (BMS-936558) or the CTLA-4 blocking Ab ipilimumab result in durable responses in multiple human malignancies. We describe the evaluation of concurrent treatment with anti-PD-1 and anti-CTLA-4 mAbs in preclinical models. Methods: Antitumor activity of treatment with murine homologs of anti-PD-1 (4H2-mIgG1) and anti-CTLA-4 (9D9-mIgG2b) was evaluated in MC38, a murine colon adenocarcinoma model. The effects of concurrent treatment on T cell infiltration of tumors, tumoral expression of PD-L1 and cytokine levels were explored. The preclinical safety profile of concurrent nivolumab + ipilimumab was assessed in a cynomolgus macaque model. Results: Concurrent treatment of MC38 tumors with 4H2-mIgG1 + 9D9-mIgG2b (10 mg/kg Q3d x 3) results in synergistic antitumor activity whereas efficacy with sequential dosing was similar to either agent alone. With concurrent treatment, dose reductions of one Ab relative to a fixed dose of the other resulted in retention of some antitumor activity. Anti-PD-1 enhanced CD8+ T cell infiltration of MC38 tumors and increased tumor PD-L1 expression. Anti-CTLA-4 treatment increased intratumoral CD8+ T cells and reduced intratumoral T regulatory cells. While concurrent treatment did not result in further increases in T cell infiltration, it increased expression of intratumoral cytokines. Anti-PD-1 resulted in down regulation of cell surface and intracellular levels of PD-1 in CD8+ T cells. In cynomolgus macaques, concurrent nivolumab + ipilimumab resulted in dose-dependent gastrointestinal toxicities (diarrhea; body weight loss) not observed in earlier cynomolgus studies with nivolumab and rarely with ipilimumab. These preclinical observations provided the rationale for a dose escalation trial (NCT01024231) of combined nivolumab + ipilimumab in advanced melanoma. Conclusions: Concurrent treatment with anti-PD-1/anti-CTLA-4 resulted in synergistic antitumor activity in preclinical models and supports the evaluation of the combination in clinical studies.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16578-e16578
Author(s):  
Yu Chen ◽  
Gang Chen ◽  
Jia-ni Xiong ◽  
Bin Lan ◽  
Xuan Gao ◽  
...  

e16578 Background: Previous data has shown that a positive response to immunotherapy usually relies on active interactions between tumor cells and immunomodulators inside the tumor microenvironment (TME). The aim of this study was to classify gastric cancer (GC) subsets based on the TME immune status according to the expression of PD-L1 and infiltration of CD8+ T cells. Methods: One hundred and eighty-six tumor tissue from gastric cancer patients with a curative D2 gastrectomy were examined for evaluating PD-L1 and CD8+ T cells status using histopathologic analysis. The molecular characteristics of 289 GC samples in TCGA network were further analyzed to distinguish the genetic features of four immune subtypes depending on the presence of PD-L1/CD8+T cell. Results: GC samples were categorized into four types, type I (CD8+/PD-L1+, 60.3%), II (CD8-/PD-L1-, 11.8%), III (CD8-/PD-L1+, 0%), and IV (CD8+/PD-L1-, 27.9%), basing on PD-L1/CD8 expression. The PD-L1 expressing level was geographically associated with the intensity of CD8+ T cell infiltration which was significantly associated with disease-free survival (DFS) and overall survival (OS) (p = 0.003 and p = 0.006). Distinct patterns of genetic profile were described in four types of GC from TCGA database. Type I and III which PD-L1 were overly expressed had comparatively higher MSI and TMB, with EBV mainly enriched in Type I, whereas CIN was more likely to occur in PD-L1 aberrant types II and IV. SNV analysis illustrated higher gene mutations in oncogenes (PIK3CA and ERBB2), and in DNA damage repair related pathway, such as PRKDC, ATM, and SWI/SNF complexes (e.g. ARID1A) in Type I. However, TP53 mutations tend to enrich in Type II and IV. Similar results were obtained by transcriptome analysis. Conclusions: The genetic features of four immune subtypes proof that PD-L1 and CD8+ T cells status are reasonable immunogenomic classification of gastric cancer. SNV analysis prompts a potential mechanism for effectiveness of immunotherapy in Type I patients. Overall, the results may be useful for the development of clinical treatments for the blockade of immune checkpoints.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiayu Wang ◽  
Hongya Wu ◽  
Yanjun Chen ◽  
Jinghan Zhu ◽  
Linqing Sun ◽  
...  

AbstractNegative immune checkpoint blockade immunotherapy has shown potential for multiple malignancies including colorectal cancer (CRC). B7-H5, a novel negative immune checkpoint regulator, is highly expressed in tumor tissues and promotes tumor immune escape. However, the clinical significance of B7-H5 expression in CRC and the role of B7-H5 in the tumor microenvironment (TME) has not been fully clarified. In this study, we observed that high B7-H5 expression in CRC tissues was significantly correlated with the lymph node involvement, AJCC stage, and survival of CRC patients. A significant inverse correlation was also observed between B7-H5 expression and CD8+ T-cell infiltration in CRC tissues. Kaplan−Meier analysis showed that patients with high B7-H5 expression and low CD8+ T-cell infiltration had the worst prognosis in our cohort of CRC patients. Remarkably, both high B7-H5 expression and low CD8+ T infiltration were risk factors for overall survival. Additionally, B7-H5 blockade using a B7-H5 monoclonal antibody (B7-H5 mAb) effectively suppressed the growth of MC38 colon cancer tumors by enhancing the infiltration and Granzyme B production of CD8+ T cells. Importantly, the depletion of CD8+ T cells obviously abolished the antitumor effect of B7-H5 blockade in the MC38 tumors. In sum, our findings suggest that B7-H5 may be a valuably prognostic marker for CRC and a potential target for CRC immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document