scholarly journals COVID-19 Mechanisms in the Human Body—What We Know So Far

2021 ◽  
Vol 12 ◽  
Author(s):  
Ashutosh Kumar ◽  
Ravi K. Narayan ◽  
Pranav Prasoon ◽  
Chiman Kumari ◽  
Gurjot Kaur ◽  
...  

More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus–host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 364
Author(s):  
Jun Ma ◽  
Lulu Ma ◽  
Meiting Yang ◽  
Wei Wu ◽  
Wenhai Feng ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.


2021 ◽  
Vol 22 (4) ◽  
pp. 1921
Author(s):  
Ruta Zulpaite ◽  
Povilas Miknevicius ◽  
Bettina Leber ◽  
Kestutis Strupas ◽  
Philipp Stiegler ◽  
...  

Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marjan Talebi ◽  
Mohsen Talebi ◽  
Tahereh Farkhondeh ◽  
Jesus Simal-Gandara ◽  
Dalia M. Kopustinskiene ◽  
...  

AbstractChrysin has been shown to exert several beneficial pharmacological activities. Chrysin has anti-cancer, anti-viral, anti-diabetic, neuroprotective, cardioprotective, hepatoprotective, and renoprotective as well as gastrointestinal, respiratory, reproductive, ocular, and skin protective effects through modulating signaling pathway involved in apoptosis, oxidative stress, and inflammation. In the current review, we discussed the emerging cellular and molecular mechanisms underlying therapeutic indications of chrysin in various cancers. Online databases comprising Scopus, PubMed, Embase, ProQuest, Science Direct, Web of Science, and the search engine Google Scholar were searched for available and eligible research articles. The search was conducted by using MeSH terms and keywords in title, abstract, and keywords. In conclusion, experimental studies indicated that chrysin could ameliorate cancers of the breast, gastrointestinal tract, liver and hepatocytes, bladder, male and female reproductive systems, choroid, respiratory tract, thyroid, skin, eye, brain, blood cells, leukemia, osteoblast, and lymph. However, more studies are needed to enhance the bioavailability of chrysin and evaluate this agent in clinical trial studies. Graphic abstract


2021 ◽  
Vol 22 (2) ◽  
pp. 660
Author(s):  
María Aguilar-Ballester ◽  
Gema Hurtado-Genovés ◽  
Alida Taberner-Cortés ◽  
Andrea Herrero-Cervera ◽  
Sergio Martínez-Hervás ◽  
...  

Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong Li ◽  
Andrew Hung ◽  
Angela Wei Hong Yang

AbstractProstate cancer (PCa) is a cancer that occurs in the prostate with high morbidity and mortality. Danggui Beimu Kushen Wan (DBKW) is a classic formula for patients with difficult urination including PCa. This study aimed to investigate the molecular mechanisms of DBKW for PCa. We obtained DBKW compounds from our previous reviews. We identified potential targets for PCa from literature search, currently approved drugs and Open Targets database and filtered them by protein–protein interaction network analysis. We selected 26 targets to predict three cancer-related pathways. A total of 621 compounds were screened via molecular docking using PyRx and AutoDock Vina against 21 targets for PCa, producing 13041 docking results. The binding patterns and positions showed that a relatively small number of tight-binding compounds from DBKW were predicted to interact strongly and selectively with three targets. The top five high-binding-affinity compounds were selected to generate a network, indicating that compounds from all three herbs had high binding affinity against the 21 targets and may have potential biological activities with the targets. DBKW contains multi-targeting agents that could act on more than one pathway of PCa simultaneously. Further studies could focus on validating the computational results via experimental studies.


2021 ◽  
Author(s):  
Daniel R. Romano ◽  
Eri Hashino ◽  
Rick F. Nelson

AbstractSensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.


2021 ◽  
Vol 16 ◽  
Author(s):  
Soudabeh Kavousi Pour ◽  
Shiva Mohammadi ◽  
Ebrahim Eftekhar ◽  
Sajad Jalili ◽  
Elham Arabizadeh ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) pandemic is a contagious disease originating from severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Previous experimental studies indicate that viral miRNAs (vMirs) have essential functions in pathogen-host interaction, immune escape, host cell death, and tumorigenesis during viral infection. MiRNAs are small, single-stranded RNAs that exist in viruses as well as in animals. Thus, these molecules can play a pivotal role in viral disease pathogenesis. Objective: Since no approved drugs or vaccines currently exist for SARS-CoV2 and its pathogenic mechanism is unknown, we explored and proposed viral microRNAs (vmiRNAs) platforms as potential antiviral therapeutic agents against its SARS-CoV2. Therefore, the development of antiviral drugs to target vmiRNAs may result in down-regulation of viral virulence genes expression and suppression of viral proliferation. Methods: In this study, to attain insight into the potential role of SARS-CoV2 derived miRNAs in the viral infection background, we used a set of computational methods to scan the SARS-CoV2 genome that finally led to computationally predicted 13 potential candidate viral microRNAs. Furthermore, we expected the potential genes in a human host that were the target of these candidate vmiRNAs by applying mirPath software. Results: Our study proposed a theory indicating that these predicted viral miRNAs might have a plausible role in altering human target gene expression, mainly contributing to the viral infectious state, inflammation, and immune system escape. This vmiRNAs maight have therapeutic trends as antiviral agents against Covid-19 infection. Conclusion: These findings offer a reference idea for a supplementary study on miRNA identification as a drug target and the necessity to increase understanding of SARS-CoV2 genome structure for better combat against the virus.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 444 ◽  
Author(s):  
Maria Barbolina

Epithelial ovarian carcinoma is the most predominant type of ovarian carcinoma, the deadliest gynecologic malignancy. It is typically diagnosed late when the cancer has already metastasized. Transcoelomic metastasis is the most predominant mechanism of dissemination from epithelial ovarian carcinoma, although both hematogenously and lymphogenously spread metastases also occur. In this review, we describe molecular mechanisms known to regulate organ-specific metastasis from epithelial ovarian carcinoma. We begin by discussing the sites colonized by metastatic ovarian carcinoma and rank them in the order of prevalence. Next, we review the mechanisms regulating the transcoelomic metastasis. Within this chapter, we specifically focus on the mechanisms that were demonstrated to regulate peritoneal adhesion—one of the first steps in the transcoelomic metastatic cascade. Furthermore, we describe mechanisms of the transcoelomic metastasis known to regulate colonization of specific sites within the peritoneal cavity, including the omentum. Mechanisms underlying hematogenous and lymphogenous metastatic spread are less comprehensively studied in ovarian cancer, and we summarize mechanisms that were identified to date. Lastly, we discuss the outcomes of the clinical trials that attempted to target some of the mechanisms described in this review.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Elisabetta Catalani ◽  
Clara De Palma ◽  
Cristiana Perrotta ◽  
Davide Cervia

Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.


Sign in / Sign up

Export Citation Format

Share Document