scholarly journals Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Elisabetta Catalani ◽  
Clara De Palma ◽  
Cristiana Perrotta ◽  
Davide Cervia

Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ning Zhang ◽  
Yong-Ping Wu ◽  
Sheng-Jun Qian ◽  
Chong Teng ◽  
Shuai Chen ◽  
...  

Platelet-rich plasma (PRP) therapy is a recently developed technique that uses a concentrated portion of autologous blood to try to improve and accelerate the healing of various tissues. There is a considerable interest in using these PRP products for the treatment used in bone deficiency healing. Because PRP products are safe and easy to prepare and administer, there has been increased attention toward using PRP in numerous clinical settings. The benefits of PRP therapy appear to be promising, and many investigators are exploring the ways in which this therapy can be used in the clinical setting. At present, the molecular mechanisms of bone defect repair studies have focused on three aspects of the inflammatory cytokines, growth factors and angiogenic factors. The role of PRP works mainly through these three aspects of bone repair. The purpose of this paper is to review the current evidence on the mechanism of the effect of PRP in bone deficiency healing.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 222 ◽  
Author(s):  
Natasha Fowler ◽  
Phuong T. Vo ◽  
Cheryl L. Sisk ◽  
Kelly L. Klump

Previous research has demonstrated significant associations between increased levels of ovarian hormones and increased rates of binge eating (BE) in women. However, whereas all women experience fluctuations in ovarian hormones across the menstrual cycle, not all women binge eat in response to these fluctuations, suggesting that other factors must contribute. Stress is one potential contributing factor. Specifically, it may be that hormone-BE associations are stronger in women who experience high levels of stress, particularly as stress has been shown to be a precipitant to BE episodes in women. To date, no studies have directly examined stress as a moderator of hormone-BE associations, but indirect data (that is, associations between BE and stress and between ovarian hormones and stress) could provide initial clues about moderating effects. Given the above, the purpose of this narrative review was to evaluate these indirect data and their promise for understanding the role of stress in hormone-BE associations. Studies examining associations between all three phenotypes (that is, ovarian hormones, stress, and BE) in animals and humans were reviewed to provide the most thorough and up-to-date review of the literature on the potential moderating effects of stress on ovarian hormone–BE associations. Overall, current evidence suggests that associations between hormones and BE may be stronger in women with high stress levels, possibly via altered hypothalamic–pituitary–adrenal axis response to stress and increased sensitivity to and altered effects of ovarian hormones during stress. Additional studies are necessary to directly examine stress as a moderator of ovarian hormone–BE associations and identify the mechanisms underlying these effects.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1135 ◽  
Author(s):  
Francesca Bonomini ◽  
Elisa Borsani ◽  
Gaia Favero ◽  
Luigi Rodella ◽  
Rita Rezzani

In the therapeutic strategies, the role of diet is a well-established factor that can also have an important role in liver diseases. Melatonin, identified in animals, has many antioxidant properties and it was after discovered also in plants, named phytomelatonin. These substances have a positive effect during aging and in pathological conditions too. In particular, it is important to underline that the amount of melatonin produced by pineal gland in human decreases during lifetime and its reduction in blood could be related to pathological conditions in which mitochondria and oxidative stress play a pivotal role. Moreover, it has been indicated that melatonin/phytomelatonin containing foods may provide dietary melatonin, so their ingestion through balanced diets could be sufficient to confer health benefits. In this review, the classification of liver diseases and an overview of the most important aspects of melatonin/phytomelatonin, concerning the differences among their synthesis, their presence in foods and their role in health and diseases, are summarized. The findings suggest that melatonin/phytomelatonin supplementation with diet should be considered important in preventing different disease settings, in particular in liver. Currently, more studies are needed to strengthen the potential beneficial effects of melatonin/phytomelatonin in liver diseases and to better clarify the molecular mechanisms of action.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 974 ◽  
Author(s):  
Aileen Hill ◽  
Sebastian Wendt ◽  
Carina Benstoem ◽  
Christina Neubauer ◽  
Patrick Meybohm ◽  
...  

The pleiotropic biochemical and antioxidant functions of vitamin C have sparked recent interest in its application in intensive care. Vitamin C protects important organ systems (cardiovascular, neurologic and renal systems) during inflammation and oxidative stress. It also influences coagulation and inflammation; its application might prevent organ damage. The current evidence of vitamin C’s effect on pathophysiological reactions during various acute stress events (such as sepsis, shock, trauma, burn and ischemia-reperfusion injury) questions whether the application of vitamin C might be especially beneficial for cardiac surgery patients who are routinely exposed to ischemia/reperfusion and subsequent inflammation, systematically affecting different organ systems. This review covers current knowledge about the role of vitamin C in cardiac surgery patients with focus on its influence on organ dysfunctions. The relationships between vitamin C and clinical health outcomes are reviewed with special emphasis on its application in cardiac surgery. Additionally, this review pragmatically discusses evidence on the administration of vitamin C in every day clinical practice, tackling the issues of safety, monitoring, dosage, and appropriate application strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yanshuo Han ◽  
Hao Zhang ◽  
Ce Bian ◽  
Chen Chen ◽  
Simei Tu ◽  
...  

Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular “sponge” in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.


2021 ◽  
Author(s):  
Carla Oliveira ◽  
Ana Rita Guimarães ◽  
Inês Correia ◽  
Inês Sousa ◽  
Ana Poim ◽  
...  

AbstractThe complex biology of the human pathogen Candida albicans is reflected in its remarkable ability to proliferate in numerous body sites, adapt to drastic changes in the environment, form various types of colonies and grow in yeast, pseudo-hyphal and hyphal forms. Much has been learnt in recent years about the relevance of this phenotypic plasticity, but the mechanisms that support it are still not fully understood. We have demonstrated that atypical translation of the CUG codon is a source of unexpected morphological diversity. The CUG codon is translated as both leucine (Leu) (~3%) and serine (Ser) (~97%) in normal growth conditions, but Ser/Leu levels change in response to stress. Remarkably, recombinant C. albicans strains incorporating between 20% and 99% of Leu at CUG sites display a diverse array of phenotypes and produce colonies of variable morphology containing a mixture of yeast, pseudohyphal and hyphal cells. In this work we investigate the role of the CUG codon in the yeast-hypha transition. Our data show that increasing incorporation levels of Leu at CUG sites trigger hyphal initiation under non-inducing conditions by reducing farnesol production, and increasing the degradation of the Nrg1 hyphal repressor. We propose that dual CUG Ser/Leu translation triggers filamentation via the Nrg1 pathway.ImportanceThe unique translation of the CUG codon as both Ser (~97%) and Leu (~3%) plays a key role in the production of high genomic and phenotypic diversity in C. albicans. The molecular mechanisms that support such diversity are poorly understood. Here, we show that increased Leu incorporation at CUG sites induce hyphae formation in media where C. albicans normally grows in the yeast form. The data show that increasing Leu at CUG sites triggers the degradation of the hyphal repressor Nrg1, allowing for full expression of hyphal genes. Since filamentation is important for invasion of host tissues, this work shows how the atypical translation of a single codon may play a critical role in the virulence of all fungi of the CTG clade.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Tao Zhang ◽  
Jianrong Guo ◽  
Jian Gu ◽  
Ke Chen ◽  
Huili Li ◽  
...  

Liver ischemia/reperfusion (IR) injury is a common phenomenon after liver resection and transplantation, which often results in liver graft dysfunction such as delayed graft function and primary nonfunction. The mammalian target of rapamycin (mTOR) is an evolutionarily highly conserved serine/threonine protein kinase, which coordinates cell growth and metabolism through sensing environmental inputs under physiological or pathological conditions, involved in the pathophysiological process of IR injury. In this review, we mainly present current evidence of the beneficial role of mTOR in modulating inflammation and autophagy under liver IR to provide some evidence for the potential therapies for liver IR injury.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Udayan Bhattacharya ◽  
Fiifi Neizer-Ashun ◽  
Priyabrata Mukherjee ◽  
Resham Bhattacharya

AbstractDeubiquitination is now understood to be as important as its partner ubiquitination for the maintenance of protein half-life, activity, and localization under both normal and pathological conditions. The enzymes that remove ubiquitin from target proteins are called deubiquitinases (DUBs) and they regulate a plethora of cellular processes. DUBs are essential enzymes that maintain intracellular protein homeostasis by recycling ubiquitin. Ubiquitination is a post-translational modification where ubiquitin molecules are added to proteins thus influencing activation, localization, and complex formation. Ubiquitin also acts as a tag for protein degradation, especially by proteasomal or lysosomal degradation systems. With ~100 members, DUBs are a large enzyme family; the ubiquitin-specific peptidases (USPs) being the largest group. USP10, an important member of this family, has enormous significance in diverse cellular processes and many human diseases. In this review, we discuss recent studies that define the roles of USP10 in maintaining cellular function, its involvement in human pathologies, and the molecular mechanisms underlying its association with cancer and neurodegenerative diseases. We also discuss efforts to modulate USPs as therapy in these diseases.


2020 ◽  
Vol 21 (22) ◽  
pp. 8653
Author(s):  
Joana F. Henriques ◽  
Diana Serra ◽  
Teresa C. P. Dinis ◽  
Leonor M. Almeida

Anthocyanins are naturally occurring polyphenols commonly found in fruits and vegetables. Numerous studies have described that anthocyanin-rich foods may play a crucial role in the prevention and treatment of different pathological conditions, which have encouraged their consumption around the world. Anthocyanins exhibit a significant neuroprotective role, mainly due to their well-recognized antioxidant and anti-inflammatory properties. Neuroinflammation is an intricate process relevant in both homeostatic and pathological circumstances. Since the progression of several neurological disorders relies on neuroinflammatory process, targeting brain inflammation has been considered a promising strategy in those conditions. Recent data have shown the anti-neuroinflammatory abilities of many anthocyanins and of their metabolites in the onset and development of several neurological disorders. In this review, it will be discussed the importance and the applicability of these polyphenolic compounds as neuroprotective agents and it will be also scrutinized the molecular mechanisms underlying the modulation of neuroinflammation by these natural compounds in the context of several brain diseases.


2015 ◽  
Vol 46 (1) ◽  
pp. 27-45 ◽  
Author(s):  
E. Appiah-Kusi ◽  
E. Leyden ◽  
S. Parmar ◽  
V. Mondelli ◽  
P. McGuire ◽  
...  

The aim of this article is to summarize current evidence regarding alterations in the neuroendocrine stress response system and endocannabinoid system and their relationship in psychotic disorders such as schizophrenia. Exposure to stress is linked to the development of a number of psychiatric disorders including psychosis. However, the precise role of stress in the development of psychosis and the possible mechanisms that might underlie this are not well understood. Recently the cannabinoid hypothesis of schizophrenia has emerged as a potential line of enquiry. Endocannabinoid levels are increased in patients with psychosis compared with healthy volunteers; furthermore, they increase in response to stress, which suggests another potential mechanism for how stress might be a causal factor in the development of psychosis. However, research regarding the links between stress and the endocannabinoid system is in its infancy. Evidence summarized here points to an alteration in the baseline tone and reactivity of the hypothalamic–pituitary–adrenal (HPA) axis as well as in various components of the endocannabinoid system in patients with psychosis. Moreover, the precise nature of the inter-relationship between these two systems is unclear in man, especially their biological relevance in the context of psychosis. Future studies need to simultaneously investigate HPA axis and endocannabinoid alterations both at baseline and following experimental perturbation in healthy individuals and those with psychosis to understand how they interact with each other in health and disease and obtain mechanistic insight as to their relevance to the pathophysiology of schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document