scholarly journals Macrophages: The Good, the Bad, and the Gluttony

2021 ◽  
Vol 12 ◽  
Author(s):  
Ewan A. Ross ◽  
Andrew Devitt ◽  
Jill R. Johnson

Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.

2019 ◽  
Vol 21 (1) ◽  
pp. 267-297 ◽  
Author(s):  
Nikhil Jain ◽  
Jens Moeller ◽  
Viola Vogel

In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.


2020 ◽  
Vol 21 (15) ◽  
pp. 5441 ◽  
Author(s):  
Adriana Vinhas ◽  
Ana F. Almeida ◽  
Ana I. Gonçalves ◽  
Márcia T. Rodrigues ◽  
Manuela E. Gomes

Inflammation is part of the natural healing response, but it has been simultaneously associated with tendon disorders, as persistent inflammatory events contribute to physiological changes that compromise tendon functions. The cellular interactions within a niche are extremely important for healing. While human tendon cells (hTDCs) are responsible for the maintenance of tendon matrix and turnover, macrophages regulate healing switching their functional phenotype to environmental stimuli. Thus, insights on the hTDCs and macrophages interactions can provide fundamental contributions on tendon repair mechanisms and on the inflammatory inputs in tendon disorders. We explored the crosstalk between macrophages and hTDCs using co-culture approaches in which hTDCs were previously stimulated with IL-1β. The potential modulatory effect of the pulsed electromagnetic field (PEMF) in macrophage-hTDCs communication was also investigated using the magnetic parameters identified in a previous work. The PEMF influences a macrophage pro-regenerative phenotype and favors the synthesis of anti-inflammatory mediators. These outcomes observed in cell contact co-cultures may be mediated by FAK signaling. The impact of the PEMF overcomes the effect of IL-1β-treated-hTDCs, supporting PEMF immunomodulatory actions on macrophages. This work highlights the relevance of intercellular communication in tendon healing and the beneficial role of the PEMF in guiding inflammatory responses toward regenerative strategies.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3362-3364 ◽  
Author(s):  
Yuya Kunisaki ◽  
Sadahiko Masuko ◽  
Mayuko Noda ◽  
Ayumi Inayoshi ◽  
Terukazu Sanui ◽  
...  

Abstract Clearance of apoptotic cells by macrophages is considered important for prevention of inflammatory responses leading to tissue damage. The phosphatidylserine receptor (PSR), which specifically binds to phosphatidylserine (PS) exposed on the surface of apoptotic cells, mediates uptake of apoptotic cells in vitro, yet the physiologic relevance of PSR remains unknown. This issue was addressed by generating PSR-deficient (PSR-/-) mice. PSR-/- mice exhibited severe anemia and died during the perinatal period. In the PSR-/- fetal livers, erythroid differentiation was blocked at an early erythroblast stage. In addition, PSR-/- embryos exhibited thymus atrophy owing to a developmental defect of T-lymphoid cells. Clearance of apoptotic cells by macrophages was impaired in both liver and thymus of PSR-/- embryos. However, this did not induce up-regulation of inflammatory cytokines. These results indicate that during embryonic development, PSR-mediated apoptotic cell uptake is required for definitive erythropoiesis and T lymphopoiesis, independently of the prevention of inflammatory responses. (Blood. 2004;103:3362-3364)


2015 ◽  
Vol 114 (09) ◽  
pp. 478-789 ◽  
Author(s):  
Waltraud Schrottmaier ◽  
Julia Kral ◽  
Sigrun Badrnya ◽  
Alice Assinger

SummaryPlatelets are key players in haemostasis and represent a pivotal link between inflammation, immunity and atherogenesis. Depending on the (patho)physiological environment platelets modulate various leukocyte functions via release of inflammatory mediators and direct cell-cell interactions. Elevated levels of circulating platelet-leukocyte aggregates are found in patients suffering from several thrombotic or inflammatory conditions. Platelet-monocyte and platelet-neutrophil interaction can trigger pro- and anti-inflammatory responses and modulate effector functions of all leukocyte subpopulations. These platelet-mediated immune responses have implications for the progression of cardiovascular diseases and also play a crucial role during infections, cancer, transplantations and other inflammatory diseases of several organs. Antiplatelet therapy including the COX inhibitor aspirin and/or ADP receptor P2Y12 inhibitors such as clopidogrel, prasugrel and ticagrelor are the therapy of choice for various cardiovascular complications. Both aspirin and P2Y12 inhibitors attenuate platelet-leukocyte interactions, thereby also modulating immune responses. This may have beneficial effects in some pathological conditions, while it might be detrimental in others. This review aims to summarise the current knowledge on platelet-leukocyte interactions and the impact of aspirin and P2Y12 inhibition on platelet-mediated immune responses and to give an overview on the effects of antiplatelet therapy on platelet-leukocyte interplay in various diseases.


2014 ◽  
Vol 307 (11) ◽  
pp. H1634-H1642 ◽  
Author(s):  
Reetu D. Singla ◽  
Jing Wang ◽  
Dinender K. Singla

Macrophage polarization is emerging as an important area of research for the development of novel therapeutics to treat inflammatory diseases. Within the current study, the role of Notch1R in macrophage differentiation was investigated as well as downstream effects in THP-1 monocytes cultured in “inflammation mimicry” media. Interference of Notch signaling was achieved using either the pharmaceutical inhibitor DAPT or Notch1R small interfering RNA (siRNA), and Notch1R expression, macrophage phenotypes, and anti- and proinflammatory cytokine expression were evaluated. Data presented show that Notch1R expression on M1 macrophages as well as M1 macrophage differentiation is significantly elevated during cellular stress ( P < 0.05). However, under identical culture conditions, interference to Notch signaling via Notch1R inhibition mitigated these results as well as promoted M2 macrophage differentiation. Moreover, when subjected to cellular stress, macrophage secretion of proinflammatory cytokines was significantly heightened ( P < 0.05). Importantly, Notch1R inhibition not only diminished proinflammatory cytokine secretion but also enhanced anti-inflammatory protein release ( P < 0.05). Our data suggest that Notch1R plays a pivotal role in M1 macrophage differentiation and heightened inflammatory responses. Therefore, we conclude that inhibition of Notch1R and subsequent downstream signaling enhances monocyte to M2 polarized macrophage outcomes and promotes anti-inflammatory mediation during cellular stress.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S013-S014
Author(s):  
G M Jowett ◽  
E Read ◽  
M D Norman ◽  
P A Arevalo ◽  
M Vilà González ◽  
...  

Abstract Background Innate Lymphoid Cells (ILC) develop from Common Lymphoid Precursors in the bone marrow, and ILC precursors (ILCP) migrate to mucosa where they mature, promote homeostasis, and provide a potent, antigen-non-specific sources of cytokines. Deciphering what local stimuli drive the final stages of ILCP maturation in these tissues remains a pressing question, as ILC frequencies can become dysregulated during chronic infection and inflammatory diseases. For example, Type-1 innate lymphoid cells (ILC1) are enriched in the mucosa of patients with active inflammatory bowel disease (IBD) and the impact of this accumulation remains elusive. Methods Here, we develop and use co-cultures of both murine and human iPSC-derived gut and lung organoids with ILCP and with mature ILC isolated from IBD patients’ intestinal biopsies. Results Harnessing these versatile models, we demonstrate that epithelial cells provide a complex niche capable of supporting the final maturation of all helper-like ILC1, ILC2, and ILC3. Notably, organoid identity was sufficient to robustly recapitulate tissue-specific ILC imprints and frequencies, even in the absence of microbial stimuli, other cell types, or cytokine supplementation. In addition, we show that that ILC1 drive expansion of the epithelial stem cell crypt through p38γ phosphorylation, driving a potentially pathological proliferative feedback loop between β-catenin and Cd44v6. We harnessed this model to elucidate that this phenotype was unexpectedly regulated by ILC1-derived TGFβ1. We further show that human gut ILC1 also secrete TGFβ1, and drive CD44v6 expression in both HIO epithelium and mesenchyme. As TGFβ1 is a master regulator of fibrosis, the leading indicator for surgery in IBD, we next characterised the ability of ILC1 to regulate matrix remodelling using a functionalized, synthetic hydrogel system. We show that ILC1 drive both matrix stiffening and degradation, which we posit occurs through a balance of MMP9 degradation and TGFβ1-induced fibronectin deposition. Conclusion Taken together, our work provides unprecedented insight into in situ ILC maturation, which we show to be driven by epithelial signals, and into ILC function. We also report that intestinal ILC1 modulate epithelial and matrix remodelling, which may drive either wound healing in homeostasis, but may tip toward pathology when enriched in IBD. Moreover, our work introduces a modular organoid platform, which provides exquisite control over both environmental stimuli and host genetics, making it a powerful tool for dissecting the interactions between complex mucosal tissues and rare cell subtypes in development and disease.


Author(s):  
Jeongho Park ◽  
Chang H. Kim

AbstractThe gut is connected to the CNS by immunological mediators, lymphocytes, neurotransmitters, microbes and microbial metabolites. A mounting body of evidence indicates that the microbiome exerts significant effects on immune cells and CNS cells. These effects frequently result in the suppression or exacerbation of inflammatory responses, the latter of which can lead to severe tissue damage, altered synapse formation and disrupted maintenance of the CNS. Herein, we review recent progress in research on the microbial regulation of CNS diseases with a focus on major gut microbial metabolites, such as short-chain fatty acids, tryptophan metabolites, and secondary bile acids. Pathological changes in the CNS are associated with dysbiosis and altered levels of microbial metabolites, which can further exacerbate various neurological disorders. The cellular and molecular mechanisms by which these gut microbial metabolites regulate inflammatory diseases in the CNS are discussed. We highlight the similarities and differences in the impact on four major CNS diseases, i.e., multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and autism spectrum disorder, to identify common cellular and molecular networks governing the regulation of cellular constituents and pathogenesis in the CNS by microbial metabolites.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marco Di Gioia ◽  
Ivan Zanoni

Endogenous oxidized phospholipids are produced during tissue stress and are responsible for sustaining inflammatory responses in immune as well as non-immune cells. Their local and systemic production and accumulation is associated with the etiology and progression of several inflammatory diseases, but the molecular mechanisms that underlie the biological activities of these oxidized phospholipids remain elusive. Increasing evidence highlights the ability of these stress mediators to modulate cellular metabolism and pro-inflammatory signaling in phagocytes, such as macrophages and dendritic cells, and to alter the activation and polarization of these cells. Because these immune cells serve a key role in maintaining tissue homeostasis and organ function, understanding how endogenous oxidized lipids reshape phagocyte biology and function is vital for designing clinical tools and interventions for preventing, slowing down, or resolving chronic inflammatory disorders that are driven by phagocyte dysfunction. Here, we discuss the metabolic and signaling processes elicited by endogenous oxidized lipids and outline new hypotheses and models to elucidate the impact of these lipids on phagocytes and inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Diana Martínez-Saucedo ◽  
Juan de Dios Ruíz-Rosado ◽  
César Terrazas ◽  
Blanca E. Callejas ◽  
Abhay R. Satoskar ◽  
...  

Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.


2015 ◽  
Vol 93 (7) ◽  
pp. 577-584 ◽  
Author(s):  
Lee J. Winchester ◽  
Sudhakar Veeranki ◽  
Srikanth Givvimani ◽  
Suresh C. Tyagi

Introduction: Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the “classically activated/destructive” (M1), and the “alternatively activated/constructive” (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. Methods: murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 μmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. Results: Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. Conclusion: Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.


Sign in / Sign up

Export Citation Format

Share Document