scholarly journals Development of a Novel Immune Infiltration-Based Gene Signature to Predict Prognosis and Immunotherapy Response of Patients With Cervical Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Sihui Yu ◽  
Xi Li ◽  
Jiawen Zhang ◽  
Sufang Wu

Predictive models could indicate the clinical outcome of patients with carcinoma. Cervical cancer is one of the most frequently diagnosed female malignancies. Herein, we proposed an immune infiltration-related gene signature that predicts prognosis of patients with cervical cancer and depicts the immune landscape as well. We utilized the transcriptome data of The Cancer Genome Atlas (TCGA) and estimated the infiltration level of 28 immune cell types. We screened out four immune cell types conducive to patient survival and recognized their shared differentially expressed genes (DEGs). Four core genes (CHIT1, GTSF1L, PLA2G2D, and GNG8) that composed the ultimate signature were identified via univariate and multivariate Cox regression. The optimal model we built up could distinguish patients with cervical cancer into high-score and low-score subgroups. These two subgroups showed disparity in aspects of patient survival, immune infiltration landscape, and response to immune checkpoint inhibitors. Additionally, we found that GTSF1L was decreased gradually along with the severity of cervical lesions, and its potential role in immune contexture and clinical practice were also demonstrated. Our results suggested that the Immunoscore based on four immune-related genes could serve as a supplementary criterion to effectively foresee the survival outcome, tumor infiltration status, and immunotherapy efficacy of cervical cancer patients.

2021 ◽  
Author(s):  
Rongjia Su ◽  
Chengwen Jin ◽  
Hualei Bu ◽  
Xiaoyun Wang ◽  
Menghua Kuang ◽  
...  

Abstract Background Cervical cancer is the fourth most frequently gynecological malignancy across the world. Immunotherapies have proved to improve prognosis of cervical cancer. However, few studies on immune-related prognostic signature had been reported in cervical cancer. Methods Raw data and clinical information of cervical cancer samples were download from TCGA and UCSC Xena website. Immunophenoscore of immune infiltration cells in cervical cancer samples was calculated through ssGSEA method using GSVA package. WGCNA, Cox regression analysis, LASSO analysis and GSEA analysis were performed to classify cervical cancer prognosis and explore the biological signaling pathway. Results There were 8 immune infiltration cells associated with prognosis of cervical cancer. Through WGCNA, 153 genes from 402 immune-related genes were significantly correlated with prognosis of cervical cancer. A 15-gene signature demonstrated powerful predictive ability in prognosis of cervical cancer. GSEA analysis showed multiple signaling pathways containing PD-L1 expression and PD-1 checkpoint pathway differences between high risk and low risk groups. Furthermore, the 15-gene signature was associated with multiple immune cells and immune infiltration in tumor microenvironment. Conclusion The 15-gene signature is an effective potential prognostic classifier in the immunotherapies and surveillance of cervical cancer.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Xiaodong Chen ◽  
Fen Tian ◽  
Peng Lun ◽  
Yugong Feng

Abstract Tumor-infiltrating immune cells play a decisive part in prognosis and survival. Until now, previous researches have not made clear about the diversity of cell types involved in the immune response. The objective of this work was to confirm the composition of tumor-infiltrating immune cells and their correlation with prognosis in meningiomas based on a metagene approach (known as CIBERSORT) and online databases. A total of 22 tumor-infiltrating immune cells were detected to determine the relationship between the immune infiltration pattern and survival. The proportion of M2 macrophages was more abundant in 68 samples, reaching more than 36%. Univariate Cox regression analysis displayed that the proportion of dendritic cells was obviously related to prognosis. Hierarchical clustering analysis identified two clusters by the method of within sum of squares errors, which exhibited different infiltrating immune cell composition and survival. To summarize, our results indicated that proportions of tumor-infiltrating immune cells as well as cluster patterns were associated with the prognosis, which offered clinical significance for research of meningiomas.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kaidi Zhao ◽  
Zhou Ma ◽  
Wei Zhang

Background:SPP1, secreted phosphoprotein 1, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family. Previous studies have proven SPP1 overexpressed in a variety of cancers and can be identified as a prognostic factor, while no study has explored the function and carcinogenic mechanism of SPP1 in cervical cancer.Methods: We aimed to demonstrate the relationship between SPP1 expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated SPP1 expression of cervical cancer in the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750. The receiver operating characteristic (ROC) curve was used to evaluate the feasibility of SPP1 as a differentiating factor by the area under curve (AUC) score. Cox regression and logistic regression were performed to evaluate factors associated with prognosis. The SPP1-binding protein network was built by the STRING tool. Enrichment analysis by the R package clusterProfiler was used to explore potential function of SPP1. The single-sample GSEA (ssGSEA) method from the R package GSVA and TIMER database were used to investigate the association between the immune infiltration level and SPP1 expression in cervical cancer.Results: Pan-cancer data analysis showed that SPP1 expression was higher in most cancer types, including cervical cancer, and we got the same result in the GEO database. The ROC curve suggested that SPP1 could be a potential diagnostic biomarker (AUC = 0.877). High SPP1 expression was associated with poorer overall survival (OS) (P = 0.032). Further enrichment and immune infiltration analysis revealed that high SPP1 expression was correlated with regulating the infiltration level of neutrophil cells and some immune cell types, including macrophage and DC.Conclusion:SPP1 expression was higher in cervical cancer tissues than in normal cervical epithelial tissues. It was significantly associated with poor prognosis and immune cell infiltration. Thus, SPP1 may become a promising prognostic biomarker for cervical cancer patients.


2020 ◽  
Vol 10 ◽  
Author(s):  
Quanwei Zhou ◽  
Xuejun Yan ◽  
Weidong Liu ◽  
Wen Yin ◽  
Hongjuan Xu ◽  
...  

Diffuse glioma is one of the most prevalent malignancies of the brain, with high heterogeneity of tumor-infiltrating immune cells. However, immune-associated subtypes of diffuse glioma have not been determined, nor has the effect of different immune-associated subtypes on disease prognosis and immune infiltration of diffuse glioma patients. We retrieved the expression profiles of immune-related genes from The Cancer Genome Atlas (TCGA) (n = 672) and GSE16011 (n = 268) cohorts and used them to identify subtypes of diffuse glioma via Consensus Cluster Plus analysis. We used the limma, clusterProfiler, ESTIMATE, and survival packages of R for differential analysis, functional enrichment, immune and stromal score evaluation respectively in three subtypes, and performed log-rank tests in immune subtypes of diffuse glioma. The immune-associated features of diffuse glioma in the two cohorts were characterized via bioinformatic analyses of the mRNA expression data of immune-related genes. Three subtypes (C1–3) of diffuse glioma were identified from TCGA data, and were verified using the GSE16011 cohort. We then evaluated their immune characteristics and clinical features. Our mRNA profiling analyses indicated that the different subtypes of diffuse glioma presented differential expression profile of specific genes and signal pathways in the TCGA cohort. Patients with subtype C1, who were mostly diagnosed with grade IV glioma, had poorer outcomes than patients with subtype C2 or C3. Subtype C1 was characterized by a higher degree of immune cell infiltration as estimated by GSVA, and more frequent wildtype IDH1. By contrast, subtype C3 included more grade II and IDH1-mutated glioma, and was associated with more infiltration of CD4+T cells. Most subtype C2 had the features between subtypes C1 and C3. Meanwhile, immune checkpoints and their ligand molecules, including PD1/(PD-L1/PDL2), CTLA4/(CD80/CD86), and B7H3/TLT2, were significantly upregulated in subtype C1 and downregulated in subtype C3. In addition, patients with subtype C1 exhibited more frequent gene mutations. Univariate and multivariate Cox regression analyses revealed that diffuse glioma subtype was an effective, independent, and better prognostic factor. Therefore, we established a novel immune-related classification of diffuse glioma, which provides potential immunotherapy targets for diffuse glioma.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Luya Cai ◽  
Chuan Hu ◽  
Shanshan Yu ◽  
Lixiao Liu ◽  
Xiaobo Yu ◽  
...  

Abstract Background Cervical cancer (CC) is one of the most common gynaecological cancers. The gene signature is believed to be reliable for predicting cancer patient survival. However, there is no relevant study on the relationship between the glycolysis-related gene (GRG) signature and overall survival (OS) of patients with CC. Methods We extracted the mRNA expression profiles of 306 tumour and 13 normal tissues from the University of California Santa Cruz (UCSC) Database. Then, we screened out differentially expressed glycolysis-related genes (DEGRGs) among these mRNAs. All patients were randomly divided into training cohort and validation cohort according to the ratio of 7: 3. Next, univariate and multivariate Cox regression analyses were carried out to select the GRG with predictive ability for the prognosis of the training cohort. Additionally, risk score model was constructed and validated it in the validation cohort. Results Six mRNAs were obtained that were associated with patient survival. The filtered mRNAs were classified into the protective type (GOT1) and the risk type (HSPA5, ANGPTL4, PFKM, IER3 and PFKFB4). Additionally, by constructing the prognostic risk score model, we found that the OS of the high-risk group was notably poorer, which showed good predictive ability both in training cohort and validation cohort. And the six-gene signature is a prognostic indicator independent of clinicopathological features. Through the verification of PCR, the results showed that compared with the normal cervial tissuses, the expression level of six mRNAs were significantly higher in the CC tissue, which was consistent with our findings. Conclusions We constructed a glycolysis-related six-gene signature to predict the prognosis of patients with CC using bioinformatics methods. We provide a thorough comprehension of the effect of glycolysis in patients with CC and provide new targets and ideas for individualized treatment.


2021 ◽  
Author(s):  
Lei Gao ◽  
Fu Li ◽  
Jiao Cai ◽  
Jia Liu ◽  
Xi Zhang ◽  
...  

Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy. The bone marrow (BM) microenvironment in AML plays an important role in leukemogenesis, drug resistance and leukemia relapse. In this study, we aimed to identify reliable immune-related biomarkers for AML prognosis by multiomics analysis. We obtained expression profiles from The Cancer Genome Atlas (TCGA) database and constructed a LASSO-Cox regression model to predict the prognosis of AML using multiomics bioinformatic analysis data. This was followed by independent validation of the model in the GSE106291 (n=251), GSE12417 (n=163) and GSE37642 (n=137) datasets and mutated genes in clinical samples for predicting overall survival (OS). Molecular docking was performed to predict the most optimal ligands to these hub genes. The single-cell RNA sequence dataset GSE116256 was used to clarify the expression of the hub genes in different immune cell types. According to their significant differences in immune gene signatures and survival trends, we concluded that the immune infiltration-lacking subtype (IL type) is associated with better prognosis than the immune infiltration-rich subtype (IR type). Using the LASSO model, we built a classifier based on 5 hub genes to predict the prognosis of AML (risk score = -0.086×ADAMTS3 + 0.180×CD52 + 0.472×CLCN5 - 0.356×HAL + 0.368×ICAM3). In summary, we constructed a prognostic model of AML using integrated multiomics bioinformatic analysis that could serve as a therapeutic classifier.


2021 ◽  
Author(s):  
Shasha Shi ◽  
Fu Peng ◽  
Chenghao Yu

Abstract BackgroundCervical cancer is a life-threatening cancer among women. It is the second most prevalent malignant tumor in women. It ranks high in cancer deaths among women worldwide, including in the United States. Immune checkpoint inhibitors have emerged as an important therapeutic approach to treat several cancers, including cervical cancer. Notably, the development and progress of cervical cancer may be related to sustained immune response. This underlines the need to clarify immune cell infiltration (ICI) in cervical cancer tissues. MethodsIn this study, disease-related information of 964 cervical cancer patients was first retrieved from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. We utilized bioinformatics data to analyze the expression profiles of immune genes in cervical cancer tissues. ResultsPatients were divided into high and low groups according to ICI score. High ICI scores corresponded with activation of immune signaling pathways and high tumor mutation burden (TMB), which was related to better prognosis of G1-2 cervical cancer. In addition, most immune checkpoints and immuno-related genes such as CD274, CD8A, CXCL10, etc. were over-expressed in the high ICI group. ConclusionsThis study demonstrated that ICI score can accurately predict the prognosis of cervical cancer. Understanding ICI patterns will deepen our understanding of tumor microenvironment (TME) of cervical cancer, which may create the foundation for the development of efficient immunotherapeutic strategies against the cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Chen ◽  
Bingqing Qiu ◽  
Xiaoyun Zeng ◽  
Lang Hu ◽  
Dongping Huang ◽  
...  

Abstract Background Previous studies have found that the microenvironment of cervical cancer (CESC) affects the progression and treatment of this disease. Thus, we constructed a multigene model to assess the survival of patients with cervical cancer. Methods We scored 307 CESC samples from The Cancer Genome Atlas (TCGA) and divided them into high and low matrix and immune scores using the ESTIMATE algorithm for differential gene analysis. Cervical cancer patients were randomly divided into a training group, testing group and combined group. The multigene signature prognostic model was constructed by Cox analyses. Multivariate Cox analysis was applied to evaluate the significance of the multigene signature for cervical cancer prognosis. Prognosis was assessed by Kaplan–Meier curves comparing the different groups, and the accuracy of the prognostic model was analyzed by receiver operating characteristic-area under the curve (ROC-AUC) analysis and calibration curve. The Tumor Immune Estimation Resource (TIMER) database was used to analyze the relationship between the multigene signature and immune cell infiltration. Results We obtained 420 differentially expressed genes in the tumor microenvironment from 307 patients with cervical cancer. A three-gene signature (SLAMF1, CD27, SELL) model related to the tumor microenvironment was constructed to assess patient survival. Kaplan–Meier analysis showed that patients with high risk scores had a poor prognosis. The ROC-AUC value indicated that the model was an accurate predictor of cervical cancer prognosis. Multivariate cox analysis showed the three-gene signature to be an independent risk factor for the prognosis of cervical cancer. A nomogram combining the three-gene signature and clinical features was constructed, and calibration plots showed that the nomogram resulted in an accurate prognosis for patients. The three-gene signature was associated with T stage, M stage and degree of immune infiltration in patients with cervical cancer. Conclusions This research suggests that the developed three-gene signature may be applied as a biomarker to predict the prognosis of and personalized therapy for CESC.


2021 ◽  
Author(s):  
Rongjia Su ◽  
Chengwen Jin ◽  
Hualei Bu ◽  
Xiaoyun Wang ◽  
Menghua Kuang ◽  
...  

Abstract Background: Cervical cancer is the fourth most frequently gynecological malignancy across the world. Immunotherapies have proved to improve prognosis of cervical cancer. However, few studies on immune-related prognostic signature had been reported in cervical cancer. Methods: Raw data and clinical information of cervical cancer samples were download from TCGA and UCSC Xena website. Immunophenoscore of immune infiltration cells in cervical cancer samples was calculated through ssGSEA method using GSVA package. WGCNA, Cox regression analysis, LASSO analysis and GSEA analysis were performed to classify cervical cancer prognosis and explore the biological signaling pathway. Results: There were 8 immune infiltration cells associated with prognosis of cervical cancer. Through WGCNA, 153 genes from 402 immune-related genes were significantly correlated with prognosis of cervical cancer. A 15-gene signature demonstrated powerful predictive ability in prognosis of cervical cancer. GSEA analysis showed multiple signaling pathways containing PD-L1 expression and PD-1 checkpoint pathway differences between high risk and low risk groups. Conclusions: The 15-gene signature was associated with multiple immune cells and immune infiltration in tumor microenvironment. Furthermore, the 15-gene signature is an effective potential prognostic classifier in the immunotherapies and surveillance of cervical cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yixin Xu ◽  
Junjie Hu ◽  
Can Cao ◽  
Mili Zhang ◽  
Youdong Liu ◽  
...  

Despite dramatic responses to immune checkpoint inhibitors (ICIs) in patients with colon cancer (CC) harboring deficient mismatch repair (dMMR), more than half of these patients ultimately progress and experience primary or secondary drug resistance. There is no useful biomarker that is currently validated to accurately predict this resistance or stratify patients who may benefit from ICI-based immunotherapy. As hypoxic and acidic tumor microenvironment would greatly impair tumor-suppressing functions of tumor-infiltrating lymphocytes (TILs), we sought to explore distinct immunological phenotypes by analysis of the intratumoral hypoxia state using a well-established gene signature. Based on the Gene Expression Omnibus (GEO) (n = 88) and The Cancer Genome Atlas (TCGA) (n = 49) databases of patients with CC, we found that dMMR CC patients could be separated into normoxia subgroup (NS) and hypoxia subgroup (HS) with different levels of expression of hypoxia-related genes (lower in NS group and higher in HS group) using NMF package. Tumoral parenchyma in the HS group had a relatively lower level of immune cell infiltration, particularly CD8+ T cells and M1 macrophages than the NS group, and coincided with higher expression of immune checkpoint molecules and C-X-C motif chemokines, which might be associated with ICI resistance and prognosis. Furthermore, three genes, namely, MT1E, MT2A, and MAFF, were identified to be differentially expressed between NS and HS groups in both GEO and TCGA cohorts. Based on these genes, a prognostic model with stable and valuable predicting ability has been built for clinical application. In conclusion, the varying tumor-immune microenvironment (TIME) classified by hypoxia-related genes might be closely associated with different therapeutic responses of ICIs and prognosis of dMMR CC patients.


Sign in / Sign up

Export Citation Format

Share Document