scholarly journals Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model

2021 ◽  
Vol 12 ◽  
Author(s):  
Niamh Fahy ◽  
Virginia Palomares Cabeza ◽  
Andrea Lolli ◽  
Janneke Witte-Bouma ◽  
Ana Merino ◽  
...  

Tissue engineering approaches using progenitor cells such as mesenchymal stromal cells (MSCs) represent a promising strategy to regenerate bone. Previous work has demonstrated the potential of chondrogenically primed human MSCs to recapitulate the process of endochondral ossification and form mature bone in vivo, using immunodeficient xenogeneic models. To further the translation of such MSC-based approaches, additional investigation is required to understand the impact of interactions between human MSC constructs and host immune cells upon the success of MSC-mediated bone formation. Although human MSCs are considered hypoimmunogenic, the potential of chondrogenically primed human MSCs to induce immunogenic responses in vivo, as well as the efficacy of MSC-mediated ectopic bone formation in the presence of fully competent immune system, requires further elucidation. Therefore, the aim of this study was to investigate the capacity of chondrogenically primed human MSC constructs to persist and undergo the process of endochondral ossification in an immune competent xenogeneic model. Chondrogenically differentiated human MSC pellets were subcutaneously implanted to wild-type BALB/c mice and retrieved at 2 and 12 weeks post-implantation. The percentages of CD4+ and CD8+ T cells, B cells, and classical/non-classical monocyte subsets were not altered in the peripheral blood of mice that received chondrogenic MSC constructs compared to sham-operated controls at 2 weeks post-surgery. However, MSC-implanted mice had significantly higher levels of serum total IgG compared to sham-operated mice at this timepoint. Flow cytometric analysis of retrieved MSC constructs identified the presence of T cells and macrophages at 2 and 12 weeks post-implantation, with low levels of immune cell infiltration to implanted MSC constructs detected by CD45 and CD3 immunohistochemical staining. Despite the presence of immune cells in the tissue, MSC constructs persisted in vivo and were not degraded/resorbed. Furthermore, constructs became mineralised, with longitudinal micro-computed tomography imaging revealing an increase in mineralised tissue volume from 4 weeks post-implantation until the experimental endpoint at 12 weeks. These findings indicate that chondrogenically differentiated human MSC pellets can persist and undergo early stages of endochondral ossification following subcutaneous implantation in an immunocompetent xenogeneic model. This scaffold-free model may be further extrapolated to provide mechanistic insight to osteoimmunological processes regulating bone regeneration and homeostasis.

2018 ◽  
Vol 115 (27) ◽  
pp. E6135-E6144 ◽  
Author(s):  
Melika Sarem ◽  
Miriam Heizmann ◽  
Andrea Barbero ◽  
Ivan Martin ◽  
V. Prasad Shastri

In adult bone injuries, periosteum-derived mesenchymal stem/stromal cells (MSCs) form bone via endochondral ossification (EO), whereas those from bone marrow (BM)/endosteum form bone primarily through intramembranous ossification (IMO). We hypothesized that this phenomenon is influenced by the proximity of MSCs residing in the BM to the trabecular bone microenvironment. Herein, we investigated the impact of the bone mineral phase on human BM-derived MSCs’ choice of ossification pathway, using a biomimetic bone-like hydroxyapatite (BBHAp) interface. BBHAp induced hyperstimulation of extracellular calcium-sensing receptor (CaSR) and temporal down-regulation of parathyroid hormone 1 receptor (PTH1R), leading to inhibition of chondrogenic differentiation of MSCs even in the presence of chondroinductive factors, such as transforming growth factor-β1 (TGF-β1). Interestingly rescuing PTH1R expression using human PTH fragment (1–34) partially restored chondrogenesis in the BBHAp environment. In vivo studies in an ectopic site revealed that the BBHAp interface inhibits EO and strictly promotes IMO. Furthermore, CaSR knockdown (CaSR KD) disrupted the bone-forming potential of MSCs irrespective of the absence or presence of the BBHAp interface. Our findings confirm the expression of CaSR in human BM-derived MSCs and unravel a prominent role for the interplay between CaSR and PTH1R in regulating MSC fate and the choice of pathway for bone formation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A113-A113
Author(s):  
Mireia Bachiller García ◽  
Lorena Pérez-Amill ◽  
Anthony Battram ◽  
Alvaro Urbano-Ispizua ◽  
Beatriz Martín-Antonio

BackgroundMultiple myeloma (MM) remains an incurable hematological malignancy where a proportion of patients relapse or become refractory to current treatments. Administration of autologous T cells modified with a chimeric antigen receptor (CAR) against B cell maturation antigen (BCMA) has achieved high percentages of complete responses. Unfortunately, the lack of persistence of CART-BCMA cells in the patient leads to relapses. On the other side, cord-blood derived natural killer cells (CB-NK) is an off-the-shelf cellular immunotherapy option to treat cancer patients with high potential due to their anti-tumor activity. However, clinical results in patients up to date have been sub-optimal. Whereas CB-NK are innate immune cells and their anti-tumor activity is developed in a few hours, CART cells are adaptive immune cells and their activity develops at later time points. Moreover, we previously described that CB-NK secrete inflammatory proteins that promote the early formation of tumor-immune cell clusters bringing cells into close contact and thus, facilitating the anti-tumor activity of T cells. Therefore, we hypothesized that the addition of a small number of CB-NK to CART cells would improve the anti-tumor activity and increase the persistence of CART cells.MethodsT cells transduced with a humanized CAR against BCMA and CB-NK were employed at 1:0.5 (CART:CB-NK) ratio. Cytotoxicity assays, activation markers and immune-tumor cell cluster formation were evaluated by flow cytometry and fluorescence microscopy. In vivo models were performed in NSG mice.ResultsThe addition of CB-NK to CART cells demonstrated higher anti-MM efficacy at low E:T ratios during the first 24h and in long-term cytotoxicity assays, where the addition of CB-NK to CART cells achieved complete removal of tumor cells. Analysis of activation marker CD69 and CD107a degranulation from 4h to 24h of co-culturing proved differences only at 4h, where CD69 and CD107a in CART cells were increased when CB-NK were present. Moreover, CB-NK accelerated an increased formation of CART-tumor cell clusters facilitating the removal of MM cells. Of note, CB-NK addition did not increase total TNFα and IFNγ production. Finally, an in vivo model of advanced MM with consecutive challenge to MM cells evidenced that the addition of CB-NK achieved the highest efficacy of the treatment.ConclusionsOur results suggest that the addition of ‘off-the-shelf’ CB-NK to CART cells leads to a faster and earlier immune response of CART cells with higher long-term maintenance of the anti-tumor response, suggesting this combinatorial therapy as an attractive immunotherapy option for MM patients.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3375
Author(s):  
Annabelle Vogt ◽  
Farsaneh Sadeghlar ◽  
Tiyasha H. Ayub ◽  
Carlo Schneider ◽  
Christian Möhring ◽  
...  

Dendritic cells (DC) as professional antigen presenting cells are able to prime T-cells against the tumor-associated antigen α-fetoprotein (AFP) for immunotherapy of hepatocellular carcinoma (HCC). However, a strong immunosuppressive tumor environment limits their efficacy in patients. The co-stimulation with CD40Ligand (CD40L) is critical in the maturation of DC and T-cell priming. In this study, the impact of intratumoral (i.t.) CD40L-expressing DC to improve vaccination with murine (m)AFP-transduced DC (Ad-mAFP-DC) was analyzed in subcutaneous (s.c.) and orthotopic murine HCC. Murine DC were adenovirally transduced with Ad-mAFP or Ad-CD40L. Hepa129-mAFP-cells were injected into the right flank or the liver of C3H-mice to induce subcutaneous (s.c.) and orthotopic HCC. For treatments, 106 Ad-mAFP-transduced DC were inoculated s.c. followed by 106 CD40L-expressing DC injected intratumorally (i.t.). S.c. inoculation with Ad-mAFP-transduced DC, as vaccine, induced a delay of tumor-growth of AFP-positive HCC compared to controls. When s.c.-inoculation of Ad-mAFP-DC was combined with i.t.-application of Ad-CD40L-DC synergistic antitumoral effects were observed and complete remissions and long-term survival in 62% of tumor-bearing animals were achieved. Analysis of the tumor environment at different time points revealed that s.c.-vaccination with Ad-mAFP-DC seems to stimulate tumor-specific effector cells, allowing an earlier recruitment of effector T-cells and a Th1 shift within the tumors. After i.t. co-stimulation with Ad-CD40L-DC, production of Th1-cytokines was strongly increased and accompanied by a robust tumor infiltration of mature DC, activated CD4+-, CD8+-T-cells as well as reduction of regulatory T-cells. Moreover, Ad-CD40L-DC induced tumor cell apoptosis. Intratumoral co-stimulation with CD40L-expressing DC significantly improves vaccination with Ad-mAFP-DC in pre-established HCC in vivo. Combined therapy caused an early and strong Th1-shift in the tumor environment as well as higher tumor apoptosis, leading to synergistic tumor regression of HCC. Thus, CD40L co-stimulation represents a promising tool for improving DC-based immunotherapy of HCC.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Anna Cole ◽  
Guillermo Rangel RIvera ◽  
Aubrey Smith ◽  
Megan Wyatt ◽  
Brandon Ware ◽  
...  

BackgroundIL-21 enhances the anti-tumor capacity of adoptively transferred CD8+ T cells, while IL-2 and IL-15 impair T cell immunity by driving their expansion to a more differentiated status. Yet, these cytokines can act on many different immune cells. Given the potency of IL-21, we tested if this cytokine directly augments T cells or rather if it enhances other immune cells in the culture that indirectly improves T cell therapy.MethodsTo test this question, splenocytes from pmel-1 transgenic mice were used, as all CD8+ T cells express a transgenic TCR specific for tumor-antigen gp10025–33 overexpressed on melanoma. We then peptide activated naïve CD8+ T cells enriched or not from the spleen of pmel-1 mice and expanded them in the presence of IL-21 or IL-2 (10 ng/mL) for four days. Expanded pmel-1 from these various cultures were then restimulated with irradiated splenocytes pulsed with gp10025–33 and grown an additional seven days with IL-2 (10 ng/mL), irrespective of their initial cytokine condition. The in vitro memory phenotype, exhaustion profile, and cytokine secretion of these cultures were then assayed. Furthermore, mice bearing B16KVP melanoma tumors were infused with pmel-1 T cells expanded via these various approaches and compared for their relative capacity to engraft, persist, and regress tumor in vivo.ResultsInterestingly, we discovered that IL-21-treated T cells generated from bulk splenocytes are phenotypically and functionally distinct from IL-21-treated isolated T cells. Upon restimulation, IL-21-treated T cells from bulk splenocytes exhibited an exhausted phenotype that was like anergic IL-2-treated T cells. Moreover, few cells expressed CD62L but expressed heightened markers of suppression, including TIM3, PD-1, and EOMES. Moreover, they produced more effector molecules, including granzyme B and IFN-gamma. In vivo IL-21-treated T cells expanded from bulk splenocytes engrafted and persisted poorly, in turn mediating suboptimal regression of melanoma. Conversely, IL-21 dramatically bolstered the engraftment and antitumor activity of T cells only if they were first isolated from the spleen prior to their expansion and infusion into the animal.ConclusionsCollectively, our data shows that IL-21 may improve ACT therapy best when used directly on antitumor CD8+ T cells. Further studies will illuminate the mechanism behind this striking difference and determine whether other cell subsets reactive to IL-21 cause T cell dysfunction and/or reduced bioavailability. These findings are important for defining the best culture conditions in which to use IL-21 for ACT.AcknowledgementsWe would like to acknowledge Emory University, The Winship Cancer Institute, and the Pediatrics/Winship Flow Cytometry Core.Ethics ApprovalAll animal procedures were approved by the Institutional Animal Care and Use Committee of Emory University, protocol number 201900225.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


2018 ◽  
Author(s):  
Nicholas Borcherding ◽  
Kawther K. Ahmed ◽  
Andrew P. Voigt ◽  
Ajaykumar Vishwakarma ◽  
Ryan Kolb ◽  
...  

Regulatory T cells (Tregs) are a population of T cells that exert a suppressive effect on a variety of immune cells and non-immune cells. The suppressive effects of Tregs are detrimental to anti-tumor immunity. Recent investigations into cancer-associated Tregs have identified common expression patterns for tumor-infiltration, however the functional heterogeneity in tumor-infiltrating (TI) Treg is largely unknown. We performed single-cell sequencing on immune cells derived from renal clear cell carcinoma (ccRCC) patients, isolating 160 peripheral-blood (PB) Tregs and 574 TI Tregs. We identified distinct transcriptional TI Treg cell fates, with a suppressive subset expressing CD177. We demonstrate CD177+ TI-Tregs have preferential suppressive effects in vivo and ex vivo. Gene signatures derived the CD177+ Treg subset had superior ability to predict survival in ccRCC and seven other cancer types. Further investigation into the development and regulation of TI-Treg heterogeneity will be vital to the application of tumor immunotherapies that possess minimal side effects.


2021 ◽  
Author(s):  
Marta Calvet-Mirabent ◽  
Daniel T. Claiborne ◽  
Maud Deruaz ◽  
Serah Tanno ◽  
Carla Serra ◽  
...  

Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of TBK1-primed DC inducing protective CD8+ T cell responses in lymphoid tissue and peripheral blood and their association with reduced HIV-1 disease progression in vivo in the humanized bone marrow, liver and thymus (hBLT) mouse model. A higher proportion of hBLT-mice vaccinated with TBK1-primed DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to secondary lymphoid organs and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, TBK1-primed DC might be an useful tool for subsequent vaccine studies.


2021 ◽  
Vol 118 (46) ◽  
pp. e2104721118
Author(s):  
Dominic Paquin-Proulx ◽  
Kerri G. Lal ◽  
Yuwadee Phuang-Ngern ◽  
Matthew Creegan ◽  
Andrey Tokarev ◽  
...  

Acute HIV-1 infection (AHI) results in the widespread depletion of CD4+ T cells in peripheral blood and gut mucosal tissue. However, the impact on the predominantly CD4+ immunoregulatory invariant natural killer T (iNKT) cells during AHI remains unknown. Here, iNKT cells from peripheral blood and colonic mucosa were investigated during treated and untreated AHI. iNKT cells in blood were activated and rapidly depleted in untreated AHI. At the time of peak HIV-1 viral load, these cells showed the elevated expression of cell death–associated transcripts compared to preinfection. Residual peripheral iNKT cells suffered a diminished responsiveness to in vitro stimulation early into chronic infection. Additionally, HIV-1 DNA, as well as spliced and unspliced viral RNA, were detected in iNKT cells isolated from blood, indicating the active infection of these cells in vivo. The loss of iNKT cells occurred from Fiebig stage III in the colonic mucosa, and these cells were not restored to normal levels after initiation of ART during AHI. CD4+ iNKT cells were depleted faster and more profoundly than conventional CD4+ T cells, and the preferential infection of CD4+ iNKT cells over conventional CD4+ T cells was confirmed by in vitro infection experiments. In vitro data also provided evidence of latent infection in iNKT cells. Strikingly, preinfection levels of peripheral blood CD4+ iNKT cells correlated directly with the peak HIV-1 load. These findings support a model in which iNKT cells are early targets for HIV-1 infection, driving their rapid loss from circulation and colonic mucosa.


2020 ◽  
Author(s):  
Mehdi Hajian ◽  
Farnoosh Jafarpour ◽  
Sayed Morteza Aghamiri ◽  
Shiva Rouhollahi Varnosfaderani ◽  
Mohsen Rahimi ◽  
...  

Abstract Background: The ingredients of embryo culture media developed by different companies are disclosed. Thus, it is impossible to determine which ingredients might be responsible for differences in pre-and post-implantation embryo development. To address this gap, we performed an experiment to compare two embryo culture media, namely, SOF and commercial BO, on pre- and post-implantation development of cloned Sannen goat embryos. Cumulus oocyte complexes derived from slaughterhouse ovaries were used for in vitro embryo production . In vitro development of IVF, parthenogenetic and SCNT embryos were assessed in both BO and SOF media. The expression of 16 genes, including AKT , OCT4 , SOX2 , BMPR1 , FGFR4 , CDC25 , CDX2 , GCN5 , PCAF , FOXD3 , SMAD5 , FZD , LIFR1 , CTNNB , ERK1 , and IFNT , belonging to 7 important pathways, i.e. pluripotency, FGF, TGFβ, cell cycle and proliferation, histone transferase, trophectoderm, and WNT, were examined in the goat SCNT and IVF blastocysts from both BO and SOF media. Results: The blastocyst rate in BO medium was significantly higher than that of the SOF medium in SCNT embryos ( P < 0.05). All of the genes examined showed increased expression levels in SCNT embryos compared to IVF embryos. In the IVF group, OCT4 , BMPR1 , and GCN5 showed significantly higher expression in the SOF medium compared to the BO medium. In this group, AKT , FGFR4 , SOX2 showed significantly lower expression in the SOF medium compared to the BO medium. In the SCNT group, FGFR4 , GCN5 , FZD , CTNNB , BMPR1 , and FGFR4 showed significantly higher expression in SOF medium compared to BO medium. In vivo development did not differ significantly between the two groups. Conclusions: Based on these results, we concluded that the limited information available on the allocations of ICM and TE cells in SCNT embryos and embryo-specific gene expression may be the major drawback IVC medium and an impediment to successful animal cloning.


Sign in / Sign up

Export Citation Format

Share Document