scholarly journals NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyue Guo ◽  
Xinxin Xu ◽  
Tiantian Li ◽  
Qin Yu ◽  
Jianzhang Wang ◽  
...  

Endometriosis is an estrogen-dependent gynecological disease. The pathogenesis of endometriosis remains controversial, although it is generally accepted that the inflammatory immune response plays a crucial role in this process. Mast cells (MCs) are multifunctional innate immune cells that accumulate in endometriotic lesions. However, the molecular mechanism by which estrogen modulates MCs in the development of endometriosis is not well understood. Here we report that estrogen can induce the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) through estrogen receptor (ER)-α via the estrogen responsive element (ERE) in MCs. Such transcriptional regulation is necessary for the activation of NLRP3 inflammasome and the production of mature interleukin (IL)-1β in MCs. Targeted inhibition of NLRP3 significantly restrained lesion progression and fibrogenesis in a mouse model of endometriosis. Collectively, these findings suggest that MCs contribute to the development of endometriosis through NLRP3 inflammasome activation mediated by nuclear-initiated estrogen signaling pathway.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianjun Jiang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
Gengyun Sun ◽  
...  

Abstract Background This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. Methods Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. Results Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. Conclusion This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Wang ◽  
Bingfeng Lin ◽  
Zhifeng Li ◽  
Jie Su ◽  
Yulin Feng

Gouty arthritis is characterized by the deposition of monosodium urate (MSU) within synovial joints and tissues due to increased urate concentrations. Here, we elucidated the role of the natural compound cichoric acid (CA) on the MSU crystal-stimulated inflammatory response. The THP-1-derived macrophages (THP-Ms) were pretreated with CA and then stimulated with MSU suspensions. The protein levels of p65 and IκBα, the activation of the NF-κB signaling pathway by measuring the expression of its downstream inflammatory cytokines, and the activity of NLRP3 inflammasome were measured by western blotting and ELISA. CA treatment markedly inhibited the degradation of IκBα and the activation of NF-κB signaling pathway and reduced the levels of its downstream inflammatory genes such as IL-1β, TNF-α, COX-2, and PGE2 in the MSU-stimulated THP-M cells. Therefore, we infer that CA effectively alleviated MSU-induced inflammation by suppressing the degradation of IκBα, thereby reducing the activation of the NF-κB signaling pathway and the NLRP3 inflammasome. These results suggest that CA could be a novel therapeutic strategy in averting acute episodes of gout.


2018 ◽  
Vol 315 (6) ◽  
pp. G909-G920 ◽  
Author(s):  
Lanju Wang ◽  
Yaohui Wang ◽  
Zhenfeng Wang ◽  
Yu Qi ◽  
Beibei Zong ◽  
...  

Growth differentiation factor 11 (GDF11) has an anti-inflammatory effect in the mouse model of atherosclerosis and Alzheimer's disease, but how GDF11 regulates intestinal inflammation during ulcerative colitis (UC) is poorly defined. The Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome is closely associated with intestinal inflammation because of its ability to increase IL-1β secretion. Our aim is to determine whether GDF11 has an effect on attenuating experimental colitis in mice. In this study, using a dextran sodium sulfate (DSS)-induced acute colitis mouse model, we reported that GDF11 treatment attenuated loss of body weight, the severity of the disease activity index, shortening of the colon, and histological changes in the colon. GDF11 remarkably suppressed IL-1β secretion and NLRP3 inflammasome activation in colon samples and RAW 264.7 cells, such as the levels of NLRP3 and activated caspase-1. Furthermore, we found that GDF11 inhibited NLRP3 inflammasome activation by downregulating the Toll-like receptor 4/NF-κB p65 pathway and reactive oxygen species production via the typical Smad2/3 pathway. Thus, our research shows that GDF11 alleviates DSS-induced colitis by inhibiting NLRP3 inflammasome activation, providing some basis for its potential use in the treatment of UC. NEW & NOTEWORTHY Here, we identify a new role for growth differentiation factor 11 (GDF11), which ameliorates dextran sodium sulfate-induced acute colitis. Meanwhile, we discover a new phenomenon of GDF11 inhibiting IL-1β secretion and Nod-like receptor family pyrin domain-1 containing 3 (NLRP3) inflammasome activation. These findings reveal that GDF11 is a new potential candidate for the treatment of ulcerative colitis patients with a hyperactive NLRP3 inflammasome.


2021 ◽  
Vol 49 (08) ◽  
pp. 2001-2015
Author(s):  
Guixian Zhang ◽  
Liming Tang ◽  
Hongbin Liu ◽  
Dawei Liu ◽  
Manxue Wang ◽  
...  

Chronic pancreatitis (CP) is a multifactorial, inflammatory syndrome characterized by acinar atrophy and fibrosis. Activation of NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome is a central mediator of multiple chronic inflammatory responses and chronic fibrosis including pancreatic fibrosis in CP. The Psidium guajavaleaf is widely used in traditional medicine for the treatment of chronic inflammation, but the anti-inflammatory effect of Psidium guajavaleaf on CP has not yet been revealed. In this study, we investigated whether the extract of total flavonoids from Psidium guajava leaves (TFPGL) plays a therapeutic mechanism on CP through NLRP3 inflammasome signaling pathway in a mouse CP model. The H&E and acid-Sirius red staining indicted that TFPGL attenuated the inflammatory cell infiltration and fibrosis significantly. The results of immunohistological staining, western blot and RT-qPCR showed that the expressions of NLRP3 and caspase-1 were significantly increased in the CP model group, while TFPGL significantly decreased the NLRP3 and caspase-1 expression at both the gene and protein levels. Moreover, ELISA assay was used to examine the levels of NLRP3 inflammasome target genes, such as caspase-1, IL-1[Formula: see text] and IL-18. We found that TFPGL treatment decreased the expression of caspase-1, IL-1[Formula: see text] and IL-18, which is critical for the NLRP3 inflammasome signaling pathway and inflammation response significantly. These results demonstrated that TFPGL attenuated pancreatic inflammation and fibrosis via preventing NLRP3 inflammasome activation and TFPGL can be used as a potential therapeutic agent for CP.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xin Zhang ◽  
Siting Hong ◽  
Shuhan Qi ◽  
Wenxiu Liu ◽  
Xiaohui Zhang ◽  
...  

Increasing evidence suggests that the NLRP3 (nucleotide oligomerization domain-like receptor family, pyrin domain containing 3) inflammasome participates in cardiovascular diseases. However, its role and activation mechanism during hypertension remains unclear. In this study, we tested the role and mechanism of calcium-sensing receptor (CaSR) in NLRP3 inflammasome activation during hypertension. We observed that the expressions of CaSR and NLRP3 were increased in spontaneous hypertensive rats (SHRs) along with aortic fibrosis. In vascular smooth muscle cells (VSMCs), the activation of NLRP3 inflammasome associated with CaSR and collagen synthesis was induced by angiotensin II (Ang II). Furthermore, inhibition of CaSR and NLRP3 inflammasome attenuated proinflammatory cytokine release, suggesting that CaSR-mediated activation of the NLRP3 inflammasome may be a therapeutic target in aortic dysfunction and vascular inflammatory lesions.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1219 ◽  
Author(s):  
Yang Zhou ◽  
Zhizi Tong ◽  
Songhong Jiang ◽  
Wenyan Zheng ◽  
Jianjun Zhao ◽  
...  

The NLRP3 (nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3) inflammasome senses pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and activates caspase-1, which provokes release of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 as well as pyroptosis to engage in innate immune defense. The endoplasmic reticulum (ER) is a large and dynamic endomembrane compartment, critical to cellular function of organelle networks. Recent studies have unveiled the pivotal roles of the ER in NLRP3 inflammasome activation. ER–mitochondria contact sites provide a location for NLRP3 activation, its association with ligands released from or residing in mitochondria, and rapid Ca2+ mobilization from ER stores to mitochondria. ER-stress signaling plays a critical role in NLRP3 inflammasome activation. Lipid perturbation and cholesterol trafficking to the ER activate the NLRP3 inflammasome. These findings emphasize the importance of the ER in initiation and regulation of the NLRP3 inflammasome.


Pharmacology ◽  
2018 ◽  
Vol 101 (5-6) ◽  
pp. 236-245 ◽  
Author(s):  
Shiro Nakamura ◽  
Toshio Watanabe ◽  
Tetsuya Tanigawa ◽  
Sunao Shimada ◽  
Yuji Nadatani ◽  
...  

Activation of the NOD-Like Receptor Family, Pyrin Domain-Containing 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1, triggers pro-caspase-1 cleavage promoting the processing of pro-interleukin (IL)-1β into mature IL-1β, which is critical for the development of non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy. We investigated the effects of isoliquiritigenin, a flavonoid derived from the roots of Glycyrrhiza species, on NSAID-induced small intestinal damage and the inflammasome activation. To induce enteropathy, mice were administered indomethacin by gavage with or without isoliquiritigenin pretreatment. Some mice received an intraperitoneal injection of recombinant murine IL-1β in addition to isoliquiritigenin and indomethacin. Indomethacin induced small intestinal damage and increased protein levels of cleaved caspase-1 and mature IL-1β in the small intestine. Treatment with 7.5 and 75 mg/kg isoliquiritigenin inhibited indomethacin-induced small intestinal damage by 40 and 56%, respectively. Isoliquiritigenin also inhibited the indomethacin-induced increase in cleaved caspase-1 and mature IL-1β protein levels, whereas it did not affect the mRNA expression of NLRP3, ASC, caspase-1, and IL-1β. Protection against intestinal damage in isoliquiritigenin-treated mice was completely abolished with exogenous IL-1β. NLRP3–/– and caspase-1–/– mice exhibited resistance to intestinal damage, and isoliquiritigenin treatment failed to inhibit the damage in NLRP3–/– and caspase-1–/– mice. Isoliquiritigenin prevents NSAID-induced small intestinal damage by inhibiting NLRP3 inflammasome activation.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Judit Erdei ◽  
Andrea Tóth ◽  
Enikő Balogh ◽  
Benard Bogonko Nyakundi ◽  
Emese Bányai ◽  
...  

Hemolytic or hemorrhagic episodes are often associated with inflammation even when infectious agents are absent suggesting that red blood cells (RBCs) release damage-associated molecular patterns (DAMPs). DAMPs activate immune and nonimmune cells through pattern recognition receptors. Heme, released from RBCs, is a DAMP and induces IL-1βproduction through the activation of the nucleotide-binding domain and leucine-rich repeat-containing family and pyrin domain containing 3 (NLRP3) in macrophages; however, other cellular targets of heme-mediated inflammasome activation were not investigated. Because of their location, endothelial cells can be largely exposed to RBC-derived DAMPs; therefore, we investigated whether heme and other hemoglobin- (Hb-) derived species induce NLRP3 inflammasome activation in these cells. We found that heme upregulated NLRP3 expression and induced active IL-1βproduction in human umbilical vein endothelial cells (HUVECs). LPS priming largely amplified the heme-mediated production of IL-1β. Heme administration into C57BL/6 mice induced caspase-1 activation and cleavage of IL-1βwhich was not observed in NLRP3−/−mice. Unfettered production of reactive oxygen species played a critical role in heme-mediated NLRP3 activation. Activation of NLRP3 by heme required structural integrity of the heme molecule, as neither protoporphyrin IX nor iron-induced IL-1βproduction. Neither naive nor oxidized forms of Hb were able to induce IL-1βproduction in HUVECs. Our results identified endothelial cells as a target of heme-mediated NLRP3 activation that can contribute to the inflammation triggered by sterile hemolysis. Thus, understanding the characteristics and cellular counterparts of RBC-derived DAMPs might allow us to identify new therapeutic targets for hemolytic diseases.


2021 ◽  
Vol 22 (22) ◽  
pp. 12413
Author(s):  
Shuang Ge ◽  
Wei Yang ◽  
Haiqiang Chen ◽  
Qi Yuan ◽  
Shi Liu ◽  
...  

Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in liver fibrosis has not been thoroughly investigated. In this study, we used a carbon tetrachloride (CCl4)-induced mouse fibrosis model in which MyD88 was selectively depleted in myeloid cells. MyD88 deficiency in myeloid cells attenuated liver fibrosis in mice and decreased inflammatory cell infiltration. Furthermore, deficiency of MyD88 in macrophages inhibits the secretion of CXC motif chemokine 2 (CXCL2), which restrains the activation of HSCs characterized by NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. Moreover, targeting CXCL2 by CXCR2 inhibitors attenuated the activation of HSCs and reduced liver fibrosis. Thus, MyD88 may represent a potential candidate target for the prevention and treatment of liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document