scholarly journals Drivers of Atmosphere-Ocean CO2 Flux in Northern Norwegian Fjords

2021 ◽  
Vol 8 ◽  
Author(s):  
Nerea J. Aalto ◽  
Karley Campbell ◽  
Hans C. Eilertsen ◽  
Hans C. Bernstein

High-latitude fjords and continental shelves are shown to be sinks for atmospheric CO2, yet large spatial-temporal variability and poor regional coverage of sea-air CO2 flux data, especially from fjord systems, makes it difficult to scale our knowledge on how they contribute to atmospheric carbon regulation. The magnitude and seasonal variability of atmosphere-sea CO2 flux was investigated in high-latitude northern Norwegian coastal areas over 2018 and 2019, including four fjords and one coastal bay. The aim was to assess the physical and biogeochemical factors controlling CO2 flux and partial pressure of CO2 in surface water via correlation to physical oceanographic and biological measurements. The results show that the study region acts as an overall atmospheric CO2 sink throughout the year, largely due to the strong undersaturation of CO2 relative to atmospheric concentrations. Wind speed exerted the strongest influence on the instantaneous rate of sea-air CO2 exchange, while exhibiting high variability. We concluded that the northernmost fjords (Altafjord and Porsangerfjord) showed stronger potential for instantaneous CO2 uptake due to higher wind speeds. We also found that fixation of CO2 was likely a significant factor controlling ΔpCO2 from April to June, which followed phenology of spring phytoplankton blooms at each location. Decreased ΔpCO2 and the resulting sea-air CO2 flux was observed in autumn due to a combined reduction of the mixed layer with entrain of high CO2 subsurface water, damped biological activity and higher surface water temperatures. This study provides the first measurements of atmospheric CO2 flux in these fjord systems and therefore an important new baseline for gaining a better understanding on how the northern Norwegian coast and characteristic fjord systems participate in atmosphere carbon regulation.

2013 ◽  
Vol 10 (3) ◽  
pp. 5041-5105 ◽  
Author(s):  
C.-T. A. Chen ◽  
T.-H. Huang ◽  
Y.-C. Chen ◽  
Y. Bai ◽  
X. He ◽  
...  

Abstract. The air-sea exchanges of CO2 in the world's 165 estuaries and 87 continental shelves are evaluated. Generally and in all seasons, upper estuaries with salinities of less than two are strong sources of CO2 (39 ± 56 mol C m−2 yr−1, negative flux indicates that the water is losing CO2 to the atmosphere); mid-estuaries with salinities of between 2 and 25 are moderate sources (17.5 ± 34 mol C m−2 yr−1) and lower estuaries with salinities of more than 25 are weak sources (8.4 ± 14 mol C m−2 yr−1). With respect to latitude, estuaries between 23.5 and 50° N have the largest flux per unit area (63 ± 101 mmol C m−2 d−1); these are followed by mid-latitude estuaries (23.5–0° S: 44 ± 29 mmol C m−2 d−1; 0–23.5° N: 39 ± 55 mmol C m−2 d−1), and then regions north of 50° N (36 ± 91 mmol C m−2 d−1). Estuaries south of 50° S have the smallest flux per unit area (9.5 ± 12 molC m−2 d−1). Mixing with low-pCO2 shelf waters, water temperature, residence time and the complexity of the biogeochemistry are major factors that govern the pCO2 in estuaries but wind speed, seldom discussed, is critical to controlling the air-water exchanges of CO2. The total annual release of CO2 from the world's estuaries is now estimated to be 0.10 PgC yr−1, which is much lower than published values mainly because of the contribution of a considerable amount of heretofore unpublished or new data from Asia and the Arctic. The Asian data, although indicating high in pCO2, are low in sea-to-air fluxes because the wind speeds are lower than previously determined values, which rely heavily on data from Europe and North America, where pCO2 is lower but wind speeds are much higher, such that the CO2 fluxes are higher than in Asia. Newly emerged CO2 flux data in the Arctic reveal that estuaries there mostly absorb, rather than release CO2. Most continental shelves, and especially those at high latitude, are under-saturated in terms of CO2 and absorb CO2 from the atmosphere in all seasons. Shelves between 0° and 23.5° S are on average a weak source and have a small flux per unit area of CO2 to the atmosphere. Water temperature, the spreading of river plumes, upwelling, and biological production seem to be the main factors in determining pCO2 in the shelves. Wind speed, again, is critical because at high latitudes, the winds tend to be strong. Since the surface water pCO2 values are low, the air-to-sea fluxes are high in regions above 50° N and below 50° S. At low latitudes, the winds tend to be weak, so the sea-to-air CO2 flux is small. Overall, the world's continental shelves absorb 0.4 PgC yr−1 from the atmosphere.


2013 ◽  
Vol 10 (10) ◽  
pp. 6509-6544 ◽  
Author(s):  
C.-T. A. Chen ◽  
T.-H. Huang ◽  
Y.-C. Chen ◽  
Y. Bai ◽  
X. He ◽  
...  

Abstract. The air–sea exchanges of CO2 in the world's 165 estuaries and 87 continental shelves are evaluated. Generally and in all seasons, upper estuaries with salinities of less than two are strong sources of CO2 (39 ± 56 mol C m−2 yr−1, positive flux indicates that the water is losing CO2 to the atmosphere); mid-estuaries with salinities of between 2 and 25 are moderate sources (17.5 ± 34 mol C m−2 yr−1) and lower estuaries with salinities of more than 25 are weak sources (8.4 ± 14 mol C m−2 yr−1). With respect to latitude, estuaries between 23.5 and 50° N have the largest flux per unit area (63 ± 101 mmol C m−2 d−1); these are followed by lower-latitude estuaries (23.5–0° S: 44 ± 29 mmol C m−2 d−1; 0–23.5° N: 39 ± 55 mmol C m−2 d−1), and then regions north of 50° N (36 ± 91 mmol C m−2 d−1). Estuaries south of 50° S have the smallest flux per unit area (9.5 ± 12 mmol C m−2 d−1). Mixing with low-pCO2 shelf waters, water temperature, residence time and the complexity of the biogeochemistry are major factors that govern the pCO2 in estuaries, but wind speed, seldom discussed, is critical to controlling the air–water exchanges of CO2. The total annual release of CO2 from the world's estuaries is now estimated to be 0.10 Pg C yr−1, which is much lower than published values mainly because of the contribution of a considerable amount of heretofore unpublished or new data from Asia and the Arctic. The Asian data, although indicating high pCO2, are low in sea-to-air fluxes because of low wind speeds. Previously determined flux values rely heavily on data from Europe and North America, where pCO2 is lower but wind speeds are much higher, such that the CO2 fluxes are higher than in Asia. Newly emerged CO2 flux data in the Arctic reveal that estuaries there mostly absorb rather than release CO2. Most continental shelves, and especially those at high latitude, are undersaturated in terms of CO2 and absorb CO2 from the atmosphere in all seasons. Shelves between 0 and 23.5° S are on average a weak source and have a small flux per unit area of CO2 to the atmosphere. Water temperature, the spreading of river plumes, upwelling, and biological production seem to be the main factors in determining pCO2 in the shelves. Wind speed, again, is critical because at high latitudes, the winds tend to be strong. Since the surface water pCO2 values are low, the air-to-sea fluxes are high in regions above 50° N and below 50° S. At low latitudes, the winds tend to be weak, so the sea-to-air CO2 flux is small. Overall, the world's continental shelves absorb 0.4 Pg C yr−1 from the atmosphere.


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
C. Prakasam ◽  
R. Saravanan ◽  
M. K. Sharma ◽  
Varinder S. Kanwar

AbstractAs the surface water in northern India is the main water resource for regional economic and also supply for drinking and irrigation purposes. However, deficiency of water quality leads to serious water pollution in the Pandoh river basin (PRB). Therefore, the main objective of the present study is to evaluate the quality of surface water. With this objective, surface water samples were collected from the PRB of northern India, and analyzed for pH, EC, turbidity, alkalinity, total dissolved solids, and total hardness. Moreover, geographical information system (GIS) tools were used to prepare the geology, drainage pattern, and location maps of the study region. Surface water quality observed from the PRB has an alkaline nature with a moderately hard type. Further studies are encouraged to better understand the water quality in northern India.


2013 ◽  
Vol 68 (12) ◽  
pp. 2632-2637 ◽  
Author(s):  
A. M. Aucour ◽  
T. Bariac ◽  
P. Breil ◽  
P. Namour ◽  
L. Schmitt ◽  
...  

Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ18O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ18O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20–30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.


2012 ◽  
Vol 16 (3) ◽  
pp. 649-669 ◽  
Author(s):  
G. H. de Rooij

Abstract. The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.


2007 ◽  
Vol 67 (1) ◽  
pp. 100-114 ◽  
Author(s):  
Tine L. Rasmussen ◽  
Erik Thomsen ◽  
Marta A. Ślubowska ◽  
Simon Jessen ◽  
Anders Solheim ◽  
...  

AbstractTwo cores from the southwestern shelf and slope of Storfjorden, Svalbard, taken at 389 m and 1485 m water depth have been analyzed for benthic and planktic foraminifera, oxygen isotopes, and ice-rafted debris. The results show that over the last 20,000 yr, Atlantic water has been continuously present on the southwestern Svalbard shelf. However, from 15,000 to 10,000 14C yr BP, comprising the Heinrich event H1 interval, the Bølling–Allerød interstades and the Younger Dryas stade, it flowed as a subsurface water mass below a layer of polar surface water. In the benthic environment, the shift to interglacial conditions occurred at 10,000 14C yr BP. Due to the presence of a thin upper layer of polar water, surface conditions remained cold until ca. 9000 14C yr BP, when the warm Atlantic water finally appeared at the surface. Neither extensive sea ice cover nor large inputs of meltwater stopped the inflow of Atlantic water. Its warm core was merely submerged below the cold polar surface water.


2009 ◽  
Vol 6 (11) ◽  
pp. 2421-2431 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland) to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (CT), [CO32−] and the saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and CT (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and CT from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.


2020 ◽  
Vol 4 (2) ◽  
pp. 36-42
Author(s):  
I Ketut Sukarasa ◽  
Ida Bagus Alit Paramarta

Research has been carried out to identify the presence of subsurface water in Selulung Village, Kintamani District, Bangli Regency using 2D geoelectric methods. The work process of this research is the first to collect data directly by using a geoelectric device with Wenner configuration. Electric currents are injected from the surface to the subsurface through the current electrodes which are put on the earth's surface. The collected data is then processed using the Res2Din software version 3.71.118. The software results in the form of 2D images are direct lateral images of subsurface structures. From the three trajectories identified, namely at the coordinates  8°12'18.7"S 115°16'08.3"E the lowest resistivity value was 178 Ohm m with a depth of 10 m which was thought to be a rock layer with surface water content. On line 2 at coordinates 8°12'16.1"S 115°16'09.7"E the resistivity value is 6 ohm.m up to 660,000 ohm.m, the maximum depth obtained is 24 m. This line is thought to be a water-bearing layer because the value of resistance is low. Line 3 which is in the coordinates 8°12'16.3"S 115°15'50.0"E the distribution of resistivity values varies from 42 - 9,400 Ohm m.


2006 ◽  
Vol 7 (5) ◽  
pp. 984-994 ◽  
Author(s):  
Konosuke Sugiura ◽  
Tetsuo Ohata ◽  
Daqing Yang

Abstract Intercomparison of solid precipitation measurement at Barrow, Alaska, has been carried out to examine the catch characteristics of various precipitation gauges in high-latitude regions with high winds and to evaluate the applicability of the WMO precipitation correction procedures. Five manual precipitation gauges (Canadian Nipher, Hellmann, Russian Tretyakov, U.S. 8-in., and Wyoming gauges) and a double fence intercomparison reference (DFIR) as an international reference standard have been installed. The data collected in the last three winters indicates that the amount of solid precipitation is characteristically low, and the zero-catch frequency of the nonshielded gauges is considerably high, 60%–80% of precipitation occurrences. The zero catch in high-latitude high-wind regions becomes a significant fraction of the total precipitation. At low wind speeds, the catch characteristics of the gauges are roughly similar to the DFIR, although it is noteworthy that the daily catch ratios decreased more rapidly with increasing wind speed compared to the WMO correction equations. The dependency of the daily catch ratios on air temperature was confirmed, and the rapid decrease in the daily catch ratios is due to small snow particles caused by the cold climate. The daily catch ratio of the Wyoming gauge clearly shows wind-induced losses. In addition, the daily catch ratios are considerably scattered under strong wind conditions due to the influence of blowing snow. This result suggests that it is not appropriate to extrapolate the WMO correction equations for the shielded gauges in high-latitude regions for high wind speed of over 6 m s−1.


2019 ◽  
Author(s):  
Anastasiia Tarasenko ◽  
Alexandre Supply ◽  
Nikita Kusse-Tiuz ◽  
Vladimir Ivanov ◽  
Mikhail Makhotin ◽  
...  

Abstract. Variability of surface water masses of the Laptev and the East-Siberian seas in August–September 2018 is studied using in situ and satellite data. In situ data was collected during ARKTIKA-2018 expedition and then completed with satellite estimates of sea surface temperature (SST) and salinity (SSS), sea surface height, satellite-derived wind speeds and sea ice concentrations. Derivation of SSS is still challenging in high latitude regions, and the quality of Soil Moisture and Ocean Salinity (SMOS) SSS retrieval was improved by applying a threshold on SSS weekly error. The validity of SST and SSS products is demonstrated using ARKTIKA-2018 continuous thermosalinograph measurements and CTD casts. The surface gradients and mixing of river and sea waters in the free of ice and ice covered areas is described with a special attention to the marginal ice zone. The Ekman transport was calculated to better understand the pathway of surface water displacement. T-S diagram using surface satellite estimates shows a possibility to investigate the surface water masses transformation in detail.


Sign in / Sign up

Export Citation Format

Share Document