scholarly journals Clinical Applicable AI System Based on Deep Learning Algorithm for Differentiation of Pulmonary Infectious Disease

2021 ◽  
Vol 8 ◽  
Author(s):  
Yu-han Zhang ◽  
Xiao-fei Hu ◽  
Jie-chao Ma ◽  
Xian-qi Wang ◽  
Hao-ran Luo ◽  
...  

Objective: To assess the performance of a novel deep learning (DL)-based artificial intelligence (AI) system in classifying computed tomography (CT) scans of pneumonia patients into different groups, as well as to present an effective clinically relevant machine learning (ML) system based on medical image identification and clinical feature interpretation to assist radiologists in triage and diagnosis.Methods: The 3,463 CT images of pneumonia used in this multi-center retrospective study were divided into four categories: bacterial pneumonia (n = 507), fungal pneumonia (n = 126), common viral pneumonia (n = 777), and COVID-19 (n = 2,053). We used DL methods based on images to distinguish pulmonary infections. A machine learning (ML) model for risk interpretation was developed using key imaging (learned from the DL methods) and clinical features. The algorithms were evaluated using the areas under the receiver operating characteristic curves (AUCs).Results: The median AUC of DL models for differentiating pulmonary infection was 99.5% (COVID-19), 98.6% (viral pneumonia), 98.4% (bacterial pneumonia), 99.1% (fungal pneumonia), respectively. By combining chest CT results and clinical symptoms, the ML model performed well, with an AUC of 99.7% for SARS-CoV-2, 99.4% for common virus, 98.9% for bacteria, and 99.6% for fungus. Regarding clinical features interpreting, the model revealed distinctive CT characteristics associated with specific pneumonia: in COVID-19, ground-glass opacity (GGO) [92.5%; odds ratio (OR), 1.76; 95% confidence interval (CI): 1.71–1.86]; larger lesions in the right upper lung (75.0%; OR, 1.12; 95% CI: 1.03–1.25) with viral pneumonia; older age (57.0 years ± 14.2, OR, 1.84; 95% CI: 1.73–1.99) with bacterial pneumonia; and consolidation (95.8%, OR, 1.29; 95% CI: 1.05–1.40) with fungal pneumonia.Conclusion: For classifying common types of pneumonia and assessing the influential factors for triage, our AI system has shown promising results. Our ultimate goal is to assist clinicians in making quick and accurate diagnoses, resulting in the potential for early therapeutic intervention.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Lal Hussain ◽  
Tony Nguyen ◽  
Haifang Li ◽  
Adeel A. Abbasi ◽  
Kashif J. Lone ◽  
...  

Abstract Background The large volume and suboptimal image quality of portable chest X-rays (CXRs) as a result of the COVID-19 pandemic could post significant challenges for radiologists and frontline physicians. Deep-learning artificial intelligent (AI) methods have the potential to help improve diagnostic efficiency and accuracy for reading portable CXRs. Purpose The study aimed at developing an AI imaging analysis tool to classify COVID-19 lung infection based on portable CXRs. Materials and methods Public datasets of COVID-19 (N = 130), bacterial pneumonia (N = 145), non-COVID-19 viral pneumonia (N = 145), and normal (N = 138) CXRs were analyzed. Texture and morphological features were extracted. Five supervised machine-learning AI algorithms were used to classify COVID-19 from other conditions. Two-class and multi-class classification were performed. Statistical analysis was done using unpaired two-tailed t tests with unequal variance between groups. Performance of classification models used the receiver-operating characteristic (ROC) curve analysis. Results For the two-class classification, the accuracy, sensitivity and specificity were, respectively, 100%, 100%, and 100% for COVID-19 vs normal; 96.34%, 95.35% and 97.44% for COVID-19 vs bacterial pneumonia; and 97.56%, 97.44% and 97.67% for COVID-19 vs non-COVID-19 viral pneumonia. For the multi-class classification, the combined accuracy and AUC were 79.52% and 0.87, respectively. Conclusion AI classification of texture and morphological features of portable CXRs accurately distinguishes COVID-19 lung infection in patients in multi-class datasets. Deep-learning methods have the potential to improve diagnostic efficiency and accuracy for portable CXRs.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


Deep Learning technology can accurately predict the presence of diseases and pests in the agricultural farms. Upon this Machine learning algorithm, we can even predict accurately the chance of any disease and pest attacks in future For spraying the correct amount of fertilizer/pesticide to elimate host, the normal human monitoring system unable to predict accurately the total amount and ardent of pest and disease attack in farm. At the specified target area the artificial percepton tells the value accurately and give corrective measure and amount of fertilizers/ pesticides to be sprayed.


2020 ◽  
Vol 71 (15) ◽  
pp. 756-761 ◽  
Author(s):  
Dahai Zhao ◽  
Feifei Yao ◽  
Lijie Wang ◽  
Ling Zheng ◽  
Yongjun Gao ◽  
...  

Abstract Background A novel coronavirus (COVID-19) has raised world concern since it emerged in Wuhan, China in December 2019. The infection may result in severe pneumonia with clusters of illness onsets. Its impacts on public health make it paramount to clarify the clinical features with other pneumonias. Methods Nineteen COVID-19 and 15 other patients with pneumonia (non-COVID-19) in areas outside of Hubei were involved in this study. Both COVID-19 and non-COVID-19 patients were confirmed to be infected using throat swabs and/or sputa with/without COVID-2019 by real-time RT-PCR. We analyzed the demographic, epidemiological, clinical, and radiological features from those patients, and compared the differences between COVID-19 and non-COVID-19. Results All patients had a history of exposure to confirmed cases of COVID-19 or travel to Hubei before illness. The median (IQR) duration was 8 (6–11) and 5 (4–11) days from exposure to onset in COVID-19 and non-COVID-19 cases, respectively. The clinical symptoms were similar between COVID-19 and non-COVID-19. The most common symptoms were fever and cough. Fifteen (78.95%) COVID-19 but 4 (26.67%) non-COVID-19 patients had bilateral involvement while 17 COVID-19 patients (89.47%) but 1 non-COVID-19 patient (6.67%) had multiple mottling and ground-glass opacity on chest CT images. Compared with non-COVID-19, COVID-19 presents remarkably more abnormal laboratory tests, including AST, ALT, γ-GT, LDH, and α-HBDH. Conclusions The COVID-19 infection has onsets similar to other pneumonias. CT scan may be a reliable test for screening COVID-19 cases. Liver function damage is more frequent in COVID-19 than non-COVID-19 patients. LDH and α-HBDH may be considerable markers for evaluation of COVID-19.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2556
Author(s):  
Liyang Wang ◽  
Yao Mu ◽  
Jing Zhao ◽  
Xiaoya Wang ◽  
Huilian Che

The clinical symptoms of prediabetes are mild and easy to overlook, but prediabetes may develop into diabetes if early intervention is not performed. In this study, a deep learning model—referred to as IGRNet—is developed to effectively detect and diagnose prediabetes in a non-invasive, real-time manner using a 12-lead electrocardiogram (ECG) lasting 5 s. After searching for an appropriate activation function, we compared two mainstream deep neural networks (AlexNet and GoogLeNet) and three traditional machine learning algorithms to verify the superiority of our method. The diagnostic accuracy of IGRNet is 0.781, and the area under the receiver operating characteristic curve (AUC) is 0.777 after testing on the independent test set including mixed group. Furthermore, the accuracy and AUC are 0.856 and 0.825, respectively, in the normal-weight-range test set. The experimental results indicate that IGRNet diagnoses prediabetes with high accuracy using ECGs, outperforming existing other machine learning methods; this suggests its potential for application in clinical practice as a non-invasive, prediabetes diagnosis technology.


2021 ◽  
Vol 45 (1) ◽  
pp. 111-124
Author(s):  
Jaehee Cho ◽  
Sehwan Kim ◽  
Gwangjin Jeong ◽  
Chonghye Kim ◽  
Ja-Kyoung Seo

Objectives: In this study, we aimed to find the influential factors in determining individuals' use and non-use of fitness and diet apps on smartphones. To this end, we focused on diverse groups of predictors that would significantly affect people's use and non-use of these apps. Methods: Overall, we considered 105 factors as potential predictors and included them in further analyses using a machine learning algorithm, XGBoost. The main reason for selecting this particular algorithm was that it had been known as one of the most accurate and popular algorithms for predicting consumer behaviors. Results: We found the accuracy score of those factors for predicting people's use and non-use of fitness and diet apps was approximately 71.3%. In particular, the most influential predictors were mainly related to social influence, media use, overeating, social support, health management, and attitudes toward exercise. Conclusion: These findings contribute to helping scholars and practitioners to develop more practical strategies of the implementation of fitness and diet apps.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10309
Author(s):  
Shreeja Kikkisetti ◽  
Jocelyn Zhu ◽  
Beiyi Shen ◽  
Haifang Li ◽  
Tim Q. Duong

Portable chest X-ray (pCXR) has become an indispensable tool in the management of Coronavirus Disease 2019 (COVID-19) lung infection. This study employed deep-learning convolutional neural networks to classify COVID-19 lung infections on pCXR from normal and related lung infections to potentially enable more timely and accurate diagnosis. This retrospect study employed deep-learning convolutional neural network (CNN) with transfer learning to classify based on pCXRs COVID-19 pneumonia (N = 455) on pCXR from normal (N = 532), bacterial pneumonia (N = 492), and non-COVID viral pneumonia (N = 552). The data was randomly split into 75% training and 25% testing, randomly. A five-fold cross-validation was used for the testing set separately. Performance was evaluated using receiver-operating curve analysis. Comparison was made with CNN operated on the whole pCXR and segmented lungs. CNN accurately classified COVID-19 pCXR from those of normal, bacterial pneumonia, and non-COVID-19 viral pneumonia patients in a multiclass model. The overall sensitivity, specificity, accuracy, and AUC were 0.79, 0.93, and 0.79, 0.85 respectively (whole pCXR), and were 0.91, 0.93, 0.88, and 0.89 (CXR of segmented lung). The performance was generally better using segmented lungs. Heatmaps showed that CNN accurately localized areas of hazy appearance, ground glass opacity and/or consolidation on the pCXR. Deep-learning convolutional neural network with transfer learning accurately classifies COVID-19 on portable chest X-ray against normal, bacterial pneumonia or non-COVID viral pneumonia. This approach has the potential to help radiologists and frontline physicians by providing more timely and accurate diagnosis.


Author(s):  
Fawziya M. Rammo ◽  
Mohammed N. Al-Hamdani

Many languages identification (LID) systems rely on language models that use machine learning (ML) approaches, LID systems utilize rather long recording periods to achieve satisfactory accuracy. This study aims to extract enough information from short recording intervals in order to successfully classify the spoken languages under test. The classification process is based on frames of (2-18) seconds where most of the previous LID systems were based on much longer time frames (from 3 seconds to 2 minutes). This research defined and implemented many low-level features using MFCC (Mel-frequency cepstral coefficients), containing speech files in five languages (English. French, German, Italian, Spanish), from voxforge.org an open-source corpus that consists of user-submitted audio clips in various languages, is the source of data used in this paper. A CNN (convolutional Neural Networks) algorithm applied in this paper for classification and the result was perfect, binary language classification had an accuracy of 100%, and five languages classification with six languages had an accuracy of 99.8%.


Sign in / Sign up

Export Citation Format

Share Document