scholarly journals Diversity of D-Amino Acid Utilizing Bacteria From Kongsfjorden, Arctic and the Metabolic Pathways for Seven D-Amino Acids

2020 ◽  
Vol 10 ◽  
Author(s):  
Yang Yu ◽  
Jie Yang ◽  
Li-Yuan Zheng ◽  
Qi Sheng ◽  
Chun-Yang Li ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


Author(s):  
Daniel Rabier

Amino acids present in the different biological fluids belong to two groups: the protein group, with the 21 classical amino acids constituting the backbone of the protein, and the nonprotein group, appearing in different metabolic pathways as intermediate metabolites. It is important to know and to be able to recognize the latter, as they are the markers of many inherited metabolic diseases. Three kinds of pathways must be considered: the catabolic pathways, the synthesis pathways, and the transport pathways. A disorder on a catabolic pathway induces an increase of all metabolites upstream and so an increase of the starting amino acid in all fluids. Any disorder on the synthetic pathway of a particular amino acid will induce a decrease of this amino acid in all fluids. When a transporter is located on a plasma membrane, its deficiency will result in normal or low concentration in plasma concomitant to a high excretion in urine.


2022 ◽  
Vol 23 (2) ◽  
pp. 787
Author(s):  
Giada Mondanelli ◽  
Claudia Volpi ◽  
Ciriana Orabona

Among the 20 amino acids needed for protein synthesis, Tryptophan (Trp) is an aromatic amino acid fundamental not only for the synthesis of the major components of living cells (namely, the proteins), but also for the maintenance of cellular homeostasis [...]


2020 ◽  
Author(s):  
Gabriel Piedrafita ◽  
Sreejith Varma ◽  
Cecilia Castro ◽  
Christoph Messner ◽  
Lukasz Szyrwiel ◽  
...  

AbstractHow metabolic pathways emerged in early evolution remains largely unknown. Recently discovered chemical networks driven by iron and sulfur resemble reaction sequences found within glycolysis, gluconeogenesis, the oxidative and reductive Krebs cycle, the Wood Ljungdahl as well as the S-adenosylmethionine pathways, components of the core cellular metabolic network. These findings suggest that the evolution of central metabolism was primed by environmental chemical reactions, implying that non-enzymatic reaction networks served as a “template” in the evolution of enzymatic activities. We speculated that the turning point for this transition would depend on the catalytic properties of the simplest structural components of proteins, single amino acids. Here, we systematically combine constituents of Fe(II)-driven non-enzymatic reactions resembling glycolysis and pentose phosphate pathway (PPP), with single proteinogenic amino acids. Multiple reaction rates are enhanced by amino acids. In particular, cysteine is able to replace (and/or complement) the metal ion Fe(II) in driving the non-enzymatic formation of the RNA-backbone metabolite ribose 5-phosphate from 6-phosphogluconate, a rate-limiting reaction of the oxidative PPP. In the presence of both Fe(II) and cysteine, a complex is formed, enabling the non-enzymatic reaction to proceed at a wide range of temperatures. At mundane temperatures, this ‘minimal enzyme-like complex’ achieves a much higher specificity in the formation of ribose 5-phosphate than the Fe(II)-driven reaction at high temperatures. Hence, simple amino acids can accelerate key steps within metal-promoted metabolism-like chemical networks. Our results imply a stepwise scenario, in which environmental chemical networks served as primers in the early evolution of the metabolic network structure.Significance StatementThe evolutionary roots of metabolic pathways are barely understood. Here we show results consistent with a stepwise scenario during the evolution of (enzymatic) metabolism, starting from non-enzymatic chemical networks. By systematic screening of metabolic-like reactivities in vitro, and using high-throughput analytical techniques, we identify an iron/cysteine complex to act as a ‘minimal enzymelike complex’, which consists of a metal ion, an amino acid, and a sugar phosphate ligand. Integrated in a metal-driven, non-enzymatic pentose phosphate pathway, it promotes the formation of the RNA-backbone precursor ribose 5-phosphate at ambient temperature.


2000 ◽  
Vol 351 (3) ◽  
pp. 545-550 ◽  
Author(s):  
Daphne A. VAN SLUIJTERS ◽  
Peter F. DUBBELHUIS ◽  
Edward F. C. BLOMMAART ◽  
Alfred J. MEIJER

Recent research carried out in several laboratories has indicated that, in addition to their role as intermediates in many metabolic pathways, amino acids can interact with insulin-dependent signal transduction. In this short review, the current state of this rapidly expanding field is discussed.


2021 ◽  
Author(s):  
◽  
Oliver Bone

<p>Cnidarian-dinoflagellate symbioses occur across a wide latitudinal range, from temperate to tropical locations in both hemispheres. In the tropics, this association provides the foundation for the development of highly diverse coral reef ecosystems. Tropical associations are particularly sensitive to thermal variability, however, leading to dysfunction of the relationship and eventual expulsion of the symbiont, known as ‘coral bleaching’. In contrast, temperate associations maintain stable symbiotic relationships in highly fluctuating thermal environments. The reason behind the relative thermal tolerance of temperate associations is still unclear, though the ability to maintain cellular homeostasis through adjustments to metabolic processes is likely a core feature of their resilience.  Both a field study and laboratory experiment were conducted to determine the metabolic responses to thermal change of the symbiosis between the temperate anemone Anthopleura aureoradiata and the dinoflagellate Symbiodinium. For the field component, A. aureoradiata were collected from Point Halswell in Wellington Harbour in both summer and winter. For the laboratory experiment, specimens collected at Pautahanui inlet were thermally acclimated in the laboratory, after which temperatures were altered over the course of one week to either 8°C (cold) or 28°C (hot) and maintained at these temperatures for six weeks. Gas chromatography coupled to mass spectrometry was then employed to determine the identity and relative quantity of a wide range of metabolites involved in primary metabolism including organic acids, fatty acids, amino acids and sugars. Based on these data, pathway activity profiling was used to determine the activity of different metabolic pathways both between seasons and in response to cold and heat treatment.  A wide range of changes to metabolic processes were observed in both host and symbiont. Photosynthetic capacity was reduced in the symbionts at low temperatures and increased at high temperatures. The only organic acid to be significantly impacted was propanedioic acid, which increased in the host in response to cold treatment, potentially related to increased translocation from the symbiont. Altered fatty acid content in both host and symbiont was related to the role of fatty acids as energy sources and storage compounds and in cell signalling processes. Changes in fatty acid-associated metabolic pathways were exemplified by arachidonic acid and linoleic acid metabolism. Alterations to free amino acids and amino acid related pathways in both host and symbiont were associated with their role as antioxidants and osmoprotectants and the catabolism of amino acids for the production of energy. In symbionts only, altered amino acid content was associated with the role of amino acids in the production of alkaloids. Changes in a number of sugar derivatives in both host and symbiont were associated with their role as antioxidants and osmoprotectants. Altered sugar metabolism in the symbiont clearly indicated an increase in the production of energy rich sugar molecules and production of cellular energy in summer/hot conditions and a decrease in winter/cold conditions. Notably impacted pathways included the Calvin cycle, glycolysis, the pentose phosphate pathway and oxidative phosphorylation. Patterns of sugar related pathway activity in the host were generally opposite to that observed in the symbiont. Overall, prominent but opposing changes in the host and symbiont were detected in the central carbohydrate and energy metabolic pathways. In general, the activity of these pathways increased in the host in winter/cold conditions and decreased in summer/hot conditions, while in the symbiont the pattern was the opposite.  These findings highlight the role of metabolic processes in enabling the persistence of a temperate cnidarian-dinoflagellate symbiosis in the face of large temperature fluctuations. This work provides a foundation upon which a deeper understanding of metabolic functioning in the cnidarian-dinoflagellate symbiosis can be built and provides a comparative platform for studies of the more thermally sensitive tropical associations.</p>


2021 ◽  
Author(s):  
◽  
Oliver Bone

<p>Cnidarian-dinoflagellate symbioses occur across a wide latitudinal range, from temperate to tropical locations in both hemispheres. In the tropics, this association provides the foundation for the development of highly diverse coral reef ecosystems. Tropical associations are particularly sensitive to thermal variability, however, leading to dysfunction of the relationship and eventual expulsion of the symbiont, known as ‘coral bleaching’. In contrast, temperate associations maintain stable symbiotic relationships in highly fluctuating thermal environments. The reason behind the relative thermal tolerance of temperate associations is still unclear, though the ability to maintain cellular homeostasis through adjustments to metabolic processes is likely a core feature of their resilience.  Both a field study and laboratory experiment were conducted to determine the metabolic responses to thermal change of the symbiosis between the temperate anemone Anthopleura aureoradiata and the dinoflagellate Symbiodinium. For the field component, A. aureoradiata were collected from Point Halswell in Wellington Harbour in both summer and winter. For the laboratory experiment, specimens collected at Pautahanui inlet were thermally acclimated in the laboratory, after which temperatures were altered over the course of one week to either 8°C (cold) or 28°C (hot) and maintained at these temperatures for six weeks. Gas chromatography coupled to mass spectrometry was then employed to determine the identity and relative quantity of a wide range of metabolites involved in primary metabolism including organic acids, fatty acids, amino acids and sugars. Based on these data, pathway activity profiling was used to determine the activity of different metabolic pathways both between seasons and in response to cold and heat treatment.  A wide range of changes to metabolic processes were observed in both host and symbiont. Photosynthetic capacity was reduced in the symbionts at low temperatures and increased at high temperatures. The only organic acid to be significantly impacted was propanedioic acid, which increased in the host in response to cold treatment, potentially related to increased translocation from the symbiont. Altered fatty acid content in both host and symbiont was related to the role of fatty acids as energy sources and storage compounds and in cell signalling processes. Changes in fatty acid-associated metabolic pathways were exemplified by arachidonic acid and linoleic acid metabolism. Alterations to free amino acids and amino acid related pathways in both host and symbiont were associated with their role as antioxidants and osmoprotectants and the catabolism of amino acids for the production of energy. In symbionts only, altered amino acid content was associated with the role of amino acids in the production of alkaloids. Changes in a number of sugar derivatives in both host and symbiont were associated with their role as antioxidants and osmoprotectants. Altered sugar metabolism in the symbiont clearly indicated an increase in the production of energy rich sugar molecules and production of cellular energy in summer/hot conditions and a decrease in winter/cold conditions. Notably impacted pathways included the Calvin cycle, glycolysis, the pentose phosphate pathway and oxidative phosphorylation. Patterns of sugar related pathway activity in the host were generally opposite to that observed in the symbiont. Overall, prominent but opposing changes in the host and symbiont were detected in the central carbohydrate and energy metabolic pathways. In general, the activity of these pathways increased in the host in winter/cold conditions and decreased in summer/hot conditions, while in the symbiont the pattern was the opposite.  These findings highlight the role of metabolic processes in enabling the persistence of a temperate cnidarian-dinoflagellate symbiosis in the face of large temperature fluctuations. This work provides a foundation upon which a deeper understanding of metabolic functioning in the cnidarian-dinoflagellate symbiosis can be built and provides a comparative platform for studies of the more thermally sensitive tropical associations.</p>


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hideo Kawaguchi ◽  
Tomohisa Hasunuma ◽  
Yasuo Ohnishi ◽  
Takashi Sazuka ◽  
Akihiko Kondo ◽  
...  

Abstract Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. Results Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives. Graphical Abstract


Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


Sign in / Sign up

Export Citation Format

Share Document