scholarly journals Taxogenomic and Comparative Genomic Analysis of the Genus Saccharomonospora Focused on the Identification of Biosynthetic Clusters PKS and NRPS

2021 ◽  
Vol 12 ◽  
Author(s):  
Ninfa Ramírez-Durán ◽  
Rafael R. de la Haba ◽  
Blanca Vera-Gargallo ◽  
Cristina Sánchez-Porro ◽  
Scarlett Alonso-Carmona ◽  
...  

Actinobacteria are prokaryotes with a large biotechnological interest due to their ability to produce secondary metabolites, produced by two main biosynthetic gene clusters (BGCs): polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS). Most studies on bioactive products have been carried out on actinobacteria isolated from soil, freshwater or marine habitats, while very few have been focused on halophilic actinobacteria isolated from extreme environments. In this study we have carried out a comparative genomic analysis of the actinobacterial genus Saccharomonospora, which includes species isolated from soils, lake sediments, marine or hypersaline habitats. A total of 19 genome sequences of members of Saccharomonospora were retrieved and analyzed. We compared the 16S rRNA gene-based phylogeny of this genus with evolutionary relationships inferred using a phylogenomic approach obtaining almost identical topologies between both strategies. This method allowed us to unequivocally assign strains into species and to identify some taxonomic relationships that need to be revised. Our study supports a recent speciation event occurring between Saccharomonospora halophila and Saccharomonospora iraqiensis. Concerning the identification of BGCs, a total of 18 different types of BGCs were detected in the analyzed genomes of Saccharomonospora, including PKS, NRPS and hybrid clusters which might be able to synthetize 40 different putative products. In comparison to other genera of the Actinobacteria, members of the genus Saccharomonospora showed a high degree of novelty and diversity of BGCs.

mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Liangzhi Li ◽  
Zhenghua Liu ◽  
Min Zhang ◽  
Delong Meng ◽  
Xueduan Liu ◽  
...  

ABSTRACT Here, we report three new Acidiphilium genomes, reclassified existing Acidiphilium species, and performed the first comparative genomic analysis on Acidiphilium in an attempt to address the metabolic potential, ecological functions, and evolutionary history of the genus Acidiphilium. In the genomes of Acidiphilium, we found an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic expansion, including genes conferring photosynthesis (puf, puh), CO2 assimilation (rbc), capacity for methane metabolism (mmo, mdh, frm), nitrogen source utilization (nar, cyn, hmp), sulfur compound utilization (sox, psr, sqr), and multiple metal and osmotic stress resistance capacities (czc, cop, ect). Additionally, the predicted donors of horizontal gene transfer were present in a cooccurrence network of Acidiphilium. Genome-scale positive selection analysis revealed that 15 genes contained adaptive mutations, most of which were multifunctional and played critical roles in the survival of extreme conditions. We proposed that Acidiphilium originated in mild conditions and adapted to extreme environments such as acidic mineral sites after the acquisition of many essential functions. IMPORTANCE Extremophiles, organisms that thrive in extreme environments, are key models for research on biological adaption. They can provide hints for the origin and evolution of life, as well as improve the understanding of biogeochemical cycling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread in acid mine drainage (AMD) systems, but the metabolic potential, ecological functions, and evolutionary history of this genus are still ambiguous. Here, we sequenced the genomes of three new Acidiphilium strains and performed comparative genomic analysis on this extremely acidophilic bacterial genus. We found in the genomes of Acidiphilium an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic ability expansion, as indicated by phylogenetic reconstruction and gene context comparison. This study has advanced our understanding of microbial evolution and biogeochemical cycling in extreme niches.


2020 ◽  
Author(s):  
Michael Sweet ◽  
Helena Villela ◽  
Tina Keller-Costa ◽  
Rodrigo Costa ◽  
Stefano Romano ◽  
...  

Abstract Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite the putative importance of bacteria, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable, coral-associated bacteria. A total of 3055 isolates from 52 studies were considered by our meta-survey. Of these, 1045 had full length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterial-coral symbioses among them. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features - not previously described for coral-bacterial symbioses - involved in host colonization and host-symbiont recognition, antiviral defence mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning, and guide the selection of probiotic candidates to promote coral resilience and improve reef restoration efforts.


2021 ◽  
Vol 9 (9) ◽  
pp. 1928
Author(s):  
Tawanda E. Maguvu ◽  
Cornelius C. Bezuidenhout

Comparative genomics, in particular, pan-genome analysis, provides an in-depth understanding of the genetic variability and dynamics of a bacterial species. Coupled with whole-genome-based taxonomic analysis, these approaches can help to provide comprehensive, detailed insights into a bacterial species. Here, we report whole-genome-based taxonomic classification and comparative genomic analysis of potential human pathogenic Enterobacter hormaechei subsp. hoffmannii isolated from chlorinated wastewater. Genome Blast Distance Phylogeny (GBDP), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) confirmed the identity of the isolates. The algorithm PathogenFinder predicted the isolates to be human pathogens with a probability of greater than 0.78. The potential pathogenic nature of the isolates was supported by the presence of biosynthetic gene clusters (BGCs), aerobactin, and aryl polyenes (APEs), which are known to be associated with pathogenic/virulent strains. Moreover, analysis of the genome sequences of the isolates reflected the presence of an arsenal of virulence factors and antibiotic resistance genes that augment the predictions of the algorithm PathogenFinder. The study comprehensively elucidated the genomic features of pathogenic Enterobacter isolates from wastewaters, highlighting the role of wastewaters in the dissemination of pathogenic microbes, and the need for monitoring the effectiveness of the wastewater treatment process.


2018 ◽  
Author(s):  
Low Yi Yik ◽  
Grace Joy Wei Lie Chin ◽  
Collin Glen Joseph ◽  
Kenneth Francis Rodrigues

ABSTRACTBacillus thuringiensis is a type of Gram positive and rod shaped bacterium that is found in a wide range of habitats. Despite the intensive studies conducted on this bacterium, most of the information available are related to its pathogenic characteristics, with only a limited number of publications mentioning its ability to survive in extreme environments. Recently, a B. thuringiensis MCMY1 strain was successfully isolated from a copper contaminated site in Mamut Copper Mine, Sabah. This study aimed to conduct a comparative genomic analysis by using the genome sequence of MCMY1 strain published in GenBank (PRJNA374601) as a target genome for comparison with other available B. thuringiensis genomes at the GenBank. Whole genome alignment, Fragment all-against-all comparison analysis, phylogenetic reconstruction and specific copper genes comparison were applied to all forty-five B. thuringiensis genomes to reveal the molecular adaptation to copper tolerance. The comparative results indicated that B. thuringiensis MCMY1 strain is closely related to strain Bt407 and strain IS5056. This strain harbors almost all available copper genes annotated from the forty-five B. thuringiensis genomes, except for the gene for Magnesium and cobalt efflux protein (CorC) which plays an indirect role in reducing the oxidative stress that caused by copper and other metal ions. Furthermore, the findings also showed that the Copper resistance gene family, CopABCDZ and its repressor (CsoR) are conserved in almost all sequenced genomes but the presence of the genes for Cytoplasmic copper homeostasis protein (CutC) and CorC across the sample genomes are highly inconsonant. The variation of these genes across the B. thuringiensis genomes suggests that each strain may have adapted to their specific ecological niche. However, further investigations will be need to support this preliminary hypothesis.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Tarek Shanati ◽  
Marion B. Ansorge-Schumacher

ABSTRACT The Gram-positive soil bacterium Arthrobacter sp. strain TS-15 (DSM 32400), which is capable of metabolizing ephedrine as a sole source of carbon and energy, was isolated. According to 16S rRNA gene sequences and comparative genomic analysis, Arthrobacter sp. TS-15 is closely related to Arthrobacter aurescens. Distinct from all known physiological paths, ephedrine metabolism by Arthrobacter sp. TS-15 is initiated by the selective oxidation of the hydroxyl function at the α-C atom, yielding methcathinone as the primary degradation product. Rational genome mining revealed a gene cluster potentially encoding the novel pathway. Two genes from the cluster, which encoded putative short-chain dehydrogenases, were cloned and expressed in Escherichia coli. The obtained enzymes were strictly NAD+ dependent and catalyzed the oxidation of ephedrine to methcathinone. Pseudoephedrine dehydrogenase (PseDH) selectively converted (S,S)-(+)-pseudoephedrine and (S,R)-(+)-ephedrine to (S)- and (R)-methcathinone, respectively. Ephedrine dehydrogenase (EDH) exhibited strict selectivity for the oxidation of the diastereomers (R,S)-(–)-ephedrine and (R,R)-(–)-pseudoephedrine. IMPORTANCE Arthrobacter sp. TS-15 is a newly isolated bacterium with the unique ability to degrade ephedrine isomers. The initiating steps of the novel metabolic pathway are described. Arthrobacter sp. TS-15 and its isolated ephedrine-oxidizing enzymes have potential for use in decontamination and synthetic applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wen-Cong Huang ◽  
Yang Liu ◽  
Xinxu Zhang ◽  
Cui-Jing Zhang ◽  
Dayu Zou ◽  
...  

AbstractThe archaeal phylum Woesearchaeota, within the DPANN superphylum, includes phylogenetically diverse microorganisms that inhabit various environments. Their biology is poorly understood due to the lack of cultured isolates. Here, we analyze datasets of Woesearchaeota 16S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities. Phylogenomic analyses indicate that the phylum can be classified into ten subgroups, termed A–J. While a symbiotic lifestyle is predicted for most, some members of subgroup J might be host-independent. The genomes of several Woesearchaeota, including subgroup J, encode putative [FeFe] hydrogenases (known to be important for fermentation in other organisms), suggesting that these archaea might be anaerobic fermentative heterotrophs.


2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Kimiho Omae ◽  
Yasuko Yoneda ◽  
Yuto Fukuyama ◽  
Takashi Yoshida ◽  
Yoshihiko Sako

ABSTRACT Calderihabitans maritimus KKC1 is a thermophilic, hydrogenogenic carboxydotroph isolated from a submerged marine caldera. Here, we describe the de novo sequencing and feature analysis of the C. maritimus KKC1 genome. Genome-based phylogenetic analysis confirmed that C. maritimus KKC1 was most closely related to the genus Moorella, which includes well-studied acetogenic members. Comparative genomic analysis revealed that, like Moorella, C. maritimus KKC1 retained both the CO2-reducing Wood-Ljungdahl pathway and energy-converting hydrogenase-based module activated by reduced ferredoxin, but it lacked the HydABC and NfnAB electron-bifurcating enzymes and pyruvate:ferredoxin oxidoreductase required for ferredoxin reduction for acetogenic growth. Furthermore, C. maritimus KKC1 harbored six genes encoding CooS, a catalytic subunit of the anaerobic CO dehydrogenase that can reduce ferredoxin via CO oxidation, whereas Moorella possessed only two CooS genes. Our analysis revealed that three cooS genes formed known gene clusters in other microorganisms, i.e., cooS-acetyl coenzyme A (acetyl-CoA) synthase (which contained a frameshift mutation), cooS–energy-converting hydrogenase, and cooF-cooS-FAD-NAD oxidoreductase, while the other three had novel genomic contexts. Sequence composition analysis indicated that these cooS genes likely evolved from a common ancestor. Collectively, these data suggest that C. maritimus KKC1 may be highly dependent on CO as a low-potential electron donor to directly reduce ferredoxin and may be more suited to carboxydotrophic growth compared to the acetogenic growth observed in Moorella, which show adaptation at a thermodynamic limit. IMPORTANCE Calderihabitans maritimus KKC1 and members of the genus Moorella are phylogenetically related but physiologically distinct. The former is a hydrogenogenic carboxydotroph that can grow on carbon monoxide (CO) with H2 production, whereas the latter include acetogenic bacteria that grow on H2 plus CO2 with acetate production. Both species may require reduced ferredoxin as an actual “energy equivalent,” but ferredoxin is a low-potential electron carrier and requires a high-energy substrate as an electron donor for reduction. Comparative genomic analysis revealed that C. maritimus KKC1 lacked specific electron-bifurcating enzymes and possessed six CO dehydrogenases, unlike Moorella species. This suggests that C. maritimus KKC1 may be more dependent on CO, a strong electron donor that can directly reduce ferredoxin via CO dehydrogenase, and may exhibit a survival strategy different from that of acetogenic Moorella, which solves the energetic barrier associated with endergonic reduction of ferredoxin with hydrogen.


2009 ◽  
Vol 191 (15) ◽  
pp. 4854-4862 ◽  
Author(s):  
Patricia Romero ◽  
Nicholas J. Croucher ◽  
N. Luisa Hiller ◽  
Fen Z. Hu ◽  
Garth D. Ehrlich ◽  
...  

ABSTRACT Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage φSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Liying Yan ◽  
Zhihui Wang ◽  
Wanduo Song ◽  
Pengmin Fan ◽  
Yanping Kang ◽  
...  

Abstract Background Stem rot caused by Sclerotium rolfsii is a very important soil-borne disease of peanut. S. rolfsii is a necrotrophic plant pathogenic fungus with an extensive host range and worldwide distribution. It can infect peanut stems, roots, pegs and pods, leading to varied yield losses. S. rolfsii strains GP3 and ZY collected from peanut in different provinces of China exhibited a significant difference in aggressiveness on peanut plants by artificial inoculation test. In this study, de-novo genome sequencing of these two distinct strains was performed aiming to reveal the genomic basis of difference in aggressiveness. Results Scleotium rolfsii strains GP3 and ZY, with weak and high aggressiveness on peanut plants, exhibited similar growth rate and oxalic acid production in laboratory. The genomes of S. rolfsii strains GP3 and ZY were sequenced by Pacbio long read technology and exhibited 70.51 Mb and 70.61 Mb, with contigs of 27 and 23, and encoded 17,097 and 16,743 gene models, respectively. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires, which might be associated with aggressiveness, differed between GP3 and ZY. There were 58 and 45 unique pathogen-host interaction (PHI) genes in GP3 and ZY, respectively. The ZY strain had more carbohydrate-active enzymes (CAZymes) in its secretome than GP3, especially in the glycoside hydrolase family (GH), the carbohydrate esterase family (CBM), and the polysaccharide lyase family (PL). GP3 and ZY also had different effector candidates and putative secondary metabolite synthetic gene clusters. These results indicated that differences in PHI, secreted CAZymes, effectors and secondary metabolites may play important roles in aggressive difference between these two strains. Conclusions The data provided a further understanding of the S. rolfsii genome. Genomic comparison provided clues to the difference in aggressiveness of S. rolfsii strains.


Sign in / Sign up

Export Citation Format

Share Document