scholarly journals Effects of Lactobacillus plantarum on the Fermentation Profile and Microbiological Composition of Wheat Fermented Silage Under the Freezing and Thawing Low Temperatures

2021 ◽  
Vol 12 ◽  
Author(s):  
Miao Zhang ◽  
Lei Wang ◽  
Guofang Wu ◽  
Xing Wang ◽  
Haoxin Lv ◽  
...  

The corruption and/or poor quality of silages caused by low temperature and freeze-thaw conditions makes it imperative to identify effective starters and low temperature silage fermentation technology that can assist the animal feed industry and improve livestock productivity. The effect of L. plantarum QZ227 on the wheat silage quality was evaluated under conditions at constant low temperatures followed by repeated freezing and thawing at low temperatures. QZ227 became the predominant strain in 10 days and underwent a more intensive lactic acid bacteria fermentation than CK. QZ227 accumulated more lactic acid, but lower pH and ammonia nitrogen in the fermentation. During the repeated freezing and thawing process, the accumulated lactic acid in the silage fermented by QZ227 remained relatively stable. Relative to CK, QZ227 reduced the abundance of fungal pathogens in silage at a constant 5°C, including Aspergillus, Sporidiobolaceae, Hypocreaceae, Pleosporales, Cutaneotrichosporon, Alternaria, and Cystobasidiomycetes. Under varying low temperature conditions from days 40 to days 60, QZ227 reduced the pathogenic abundance of fungi such as Pichia, Aspergillus, Agaricales, and Plectosphaerella. QZ227 also reduced the pathogenic abundance of Mucoromycota after the silage had been exposed to oxygen. In conclusion, QZ227 can be used as a silage additive in the fermentation process at both constant and variable low temperatures to ensure fast and vigorous fermentation because it promotes the rapid accumulation of lactic acid, and reduces pH values and aerobic corruption compared to the CK.

1998 ◽  
Vol 64 (8) ◽  
pp. 2982-2987 ◽  
Author(s):  
Yimin Cai ◽  
Yoshimi Benno ◽  
Masuhiro Ogawa ◽  
Sadahiro Ohmomo ◽  
Sumio Kumai ◽  
...  

ABSTRACT Lactobacillus spp. from an inoculant andWeissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion ofd-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 andL. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss.


2020 ◽  
Author(s):  
Juntao Zhang ◽  
Xiying Huang ◽  
Menggen Ma ◽  
Quanju Xiang ◽  
Ke Zhao ◽  
...  

Abstract Background:Silage fermentation, a sustainable way to use vegetable waste resources, is a complex process driven by a variety of microorganisms. We used lettuce waste as the raw material for silage, analyzed changes in the physico-chemical characteristics and bacterial community composition of silage during a 60 day fermentation, identified differentially abundant taxa, predicted the functional profiles of bacterial communities, and determined the associated effects on the quality of silage. Results: The biggest changes occurred in the early stage of silage fermentation. Changes in the physico-chemical characteristics included a decrease in pH and increases in ammonia nitrogen to total nitrogen ratio and lactic acid content. The numbers of lactic acid bacteria increased and those of molds, yeasts and aerobic bacteria decreased. The bacterial communities and their predicted functions on day 0 were clearly different from those on day 7 to day 60. The relative abundances of phylum Firmicutes and genus Lactobacillus increased. Nitrite ammonification and nitrate ammonification were more prevalent after day 0. The differences in the predicted functions were associated with differences in pH and amino acid, protein, carbohydrate, NH3-N, ether extract and crude ash contents. Conclusion: Firmicutes and Lactobacillus were the dominant taxa during vegetable waste silage fermentation. The microbial communities and the predicted functions changed in different stages of silage fermentation, and the changes were accompanied with changes in the physico-chemical characteristics, especially with a decrease in pH and increases in ammonia nitrogen to total nitrogen ratio and lactic acid content.


2020 ◽  
Vol 33 (8) ◽  
pp. 1252-1264 ◽  
Author(s):  
Yimin Cai ◽  
Zhumei Du ◽  
Seishi Yamasaki ◽  
Damiao Nguluve ◽  
Benedito Tinga ◽  
...  

Objective: To effectively utilize crop by-product resources to address the shortage of animal feed during the dry season in Africa, the community of natural lactic acid bacteria (LAB) of corn stover and sugarcane tops and fermentation characteristics of silage were studied in Mozambique.Methods: Corn stover and sugarcane tops were obtained from agricultural field in Mozambique. Silage was prepared with LAB inoculant and cellulase enzyme and their fermentation quality and microbial population were analyzed.Results: Aerobic bacteria were the dominant population with 10<sup>7</sup> colony-forming unit/g of fresh matter in both crops prior to ensiling, while 10<sup>4</sup> to 10<sup>7</sup> LAB became the dominant bacteria during ensiling. <i>Lactobacillus plantarum</i> was more than 76.30% of total isolates which dominated silage fermentation in the LAB-treated sugarcane top silages or all corn stover silages. Fresh corn stover and sugarcane tops contain 65.05% to 76.10% neutral detergent fiber (NDF) and 6.52% to 6.77% crude protein (CP) on a dry matter basis, and these nutrients did not change greatly during ensiling. Corn stover exhibits higher LAB counts and watersoluble carbohydrates content than sugarcane top, which are naturally suited for ensiling. Meanwhile, sugarcane tops require LAB or cellulase additives for high quality of silage making.Conclusion: This study confirms that both crop by-products contain certain nutrients of CP and NDF that could be well-preserved in silage, and that they are potential roughage resources that could cover livestock feed shortages during the dry season in Africa.


2018 ◽  
Vol 69 (12) ◽  
pp. 1225
Author(s):  
Miao Zhang ◽  
Zhongfang Tan ◽  
Xiaojie Wang ◽  
Meiyan Cui ◽  
Yanping Wang ◽  
...  

Lactic acid bacteria (LAB) can be used as silage additives to ensure rapid and vigorous fermentation at early stages of ensiling. We predicted that the optimal LAB inoculation dosage for forage at ambient temperature (15–38°C) would be different from that at cold temperature (4°C). In this study, Lactobacillus plantarum QZ227, isolated from a wheat landrace in alpine regions of Qinghai, China, and commercial L. plantarum FG1 were used as inoculum, with sterile water as control. The effects of inoculum dosage on the fermentation quality of oat (Avena sativa L. cv. Qinghai) and wheat (Triticum aestivum L. cv. Yumai No. 1) silage at ambient temperature (15–38°C) and at 4°C were investigated in laboratory experiments. Little or no improvement in silage quality occurred upon increasing the inoculum dosage at ambient temperature. By contrast, a lower pH and NH3-N content, and a higher LAB count and lactic acid content, were observed at 4°C. Furthermore, the growth of Escherichia coli was inhibited effectively at the lower temperature, and silage quality was positively correlated with increasing inoculum dosage (P&lt;0.05). These results suggest that increasing the inoculum dosage could improve the quality of silage at lower temperatures of 4°C, whereas an appropriate dosage was a key factor for silage at ambient temperature. In this study, oat forage could be used as raw materials for ensiling only at low temperature but was not suitable for ensiling at ambient temperature without wilting due to the high moisture content (86.55%). QZ227 isolated from the roots of wheat in alpine regions displayed superior antimicrobial properties against yeast at ambient temperature and E. coli at 4°C compared with commercial strain FG1. This is the first study to explore the effects of inoculum dosage on silage quality at low temperatures, and provides a basis for low-temperature silage technologies.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 174
Author(s):  
Musen Wang ◽  
Run Gao ◽  
Marcia Franco ◽  
David B. Hannaway ◽  
Wencan Ke ◽  
...  

The influence of mixing alfalfa with whole-plant corn in different proportions on the fermentation characteristics and bacterial community of silage was investigated. Alfalfa and whole-plant corn, harvested at dry matter content of 276.47 and 328.43 g/kg fresh weight, accordingly, were chopped to approximately 2 cm and mixed at ratios of 100:0 (C0, control), 80:20 (C20), 60:40 (C40), 40:60 (C60), 20:80 (C80) and 0:100 (C100) on a fresh weight basis, respectively. Silos of each treatment were produced in triplicate and anaerobically fermented in darkness for 100 days at room temperature (20–21 °C). At silo opening, silage fermentation characteristics and bacterial composition and diversity were analyzed. The C0 silage was weakly preserved, evidenced by a low lactic acid concentration and a high value of pH, acetic acid, propionic acid, butyric acid and ammonia nitrogen. With corn proportion in the mixture increasing from 0% to 40%, silage pH, acetic acid, butyric acid and ammonia nitrogen level decreased, whereas the value of lactic acid and lactic acid to acetic acid ratio increased. The C40, C60, C80 and C100 silages’ Flieg score, used to evaluate the overall fermentation quality, was above 80 and higher than C0 (25) and C20 (61) silages. The C0 silage contained a complex bacterial community at the genus level, consisting mainly of Enterococcus (38.86%), Enterobacteria (20.61%), Rhizobium (8.45%), Lactobacillus (8.15%), Methylobacterium (5.54%) and Weissella (5.24%). As corn percentage increased from 0% to 40%, the relative abundance of desirable Lactobacillus increased and undesirable Rhizobium and Methylobacterium population reduced. With corn proportion in the mixture increasing from 0% to 40%, inclusion of corn to alfalfa at ensiling significantly improved silage fermentation quality and shifted the bacterial community for better silage preservation. Overall, high quality silage was produced when alfalfa was combined with at least 40% whole-plant corn on a fresh weight basis.


2021 ◽  
Vol 9 (9) ◽  
pp. 1963
Author(s):  
Elena Gonzalez-Fandos ◽  
Maria Vazquez de Castro ◽  
Alba Martinez-Laorden

Riojano chorizo is a dry cured sausage manufactured with traditional technologies without adding starter cultures at low temperatures. Its characteristics differ from other types of chorizo since sugars and nitrites are no added and processing temperatures are low- This work evaluates the behaviour of Listeria monocytogenes during the processing of inoculated Riojano chorizo as well as the natural microflora that can play a technological role or be of interest as indicators. The sausage mixture was inoculated with a cocktail of three selected strains of L. monocytogenes (CECT 932, CECT 934 and CECT 4032) (4 log10 CFU/g) and after processed following the traditional production method. Samples were taken before inoculation, after inoculation, after stuffing (day 0) and on days 6, 13, 21 and 28 of processing. L. monocytogenes, mesophiles, Micrococcaceae, lactic acid bacteria, Enterobacteriaceae, S. aureus, sulfite-reducing clostridia and molds and yeast counts were evaluated. Furthermore, pH, water activity and humidity were determined. No growth of L mocytogenes was observed during the first 6 days, when the temperature of processing was 4 °C. The low temperature in the initial stages was a relevant hurdle to control L. monocytoegenes growth. A significant decrease (p ≤ 0.05) in L. monocytogenes counts was observed on day 13 compared to the initial counts. During drying (days 6 to 21) a reduction in this pathogen of 1.28 log CFU/g was observed. The low water activity below 0.92 on day 13 and 0.86 on day 21 seems to be critical for the reduction of L. monocytogenes.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 330 ◽  
Author(s):  
Shiau-Wei Chen ◽  
Han-Tsung Wang ◽  
Wei-Yuan Shih ◽  
Yan-An Ciou ◽  
Yu-Yi Chang ◽  
...  

Zearalenone (ZEN) is an estrogenic mycotoxin which can cause loss in animal production. The aim of this study was to screen Bacillus strains for their ZEN detoxification capability and use a fermentation process to validate their potential application in the feed industry. In the high-level ZEN-contaminated maize (5 mg·kg−1) fermentation test, B2 strain exhibited the highest detoxification rate, removing 56% of the ZEN. However, B2 strain was not the strain with the highest ZEN detoxification in the culturing media. When B2 grew in TSB medium with ZEN, it had higher bacterial numbers, lactic acid, acetic acid, total volatile fatty acids, and ammonia nitrogen. The ZEN-contaminated maize fermented by B2 strain had better fermentation characteristics (lactic acid > 110 mmol·L−1; acetic acid < 20 mmol·L−1; pH < 4.5) than ZEN-free maize. Furthermore, B2 also had detoxification capabilities toward aflatoxins B1, deoxynivalenol, fumonisin B1, and T2 toxin. Our study demonstrated differences in screening outcome between bacterial culturing conditions and the maize fermentation process. This is important for the feed industry to consider when choosing a proper method to screen candidate isolates for the pretreatment of ZEN-contaminated maize. It appears that using the fermentation process to address the ZEN-contaminated maize problem in animal feed is a reliable choice.


Author(s):  
Berrin Okuyucu ◽  
Selma Büyükkılıç Beyzi ◽  
Mehmet Levent Özdüven

This study was carried out to determine the effects of lactic acid bacteria+ enzyme (LAB+E) inoculants on the fermentation characteristics and feed values of silages prepared from alfalfa harvested at three maturity stages. Alfalfa was harvested at the early, middle and late flowering stages. Sil-All (Alltech, UK) were used as LAB+E inoculants. Inoculants were applied to the silages at the rates of 1×105, 5×105 and 1×106 cfu/g levels in 1 liter capacity plastic bags. The bags were stored at 20±2°C under the laboratory conditions. Three bags from each group were sampled for chemical and microbiological analyses on the 45th day after ensiling. The results showed that LAB+E inoculants reduced pH values and ammonia-nitrogen content, whereas increased lactic acid contents and lactobacillus count of alfalfa silages. High doses LAB+E inoculant decreased neutral detergent fiber and acid detergent fiber content, increased in vitro organic matter digestibility and metabolic energy of alfalfa silages. It has been demonstrated that the most effective application dose of LAB+E inoculant to improve fermentation and feed value of alfalfa silage was 1×106 cfu/g, but 1x105 and 5×105 cfu/g level can also be considered as effective dose.


Author(s):  
Quanju Xiang ◽  
Juntao Zhang ◽  
Xiying Huang ◽  
Menggen Ma ◽  
Ke Zhao ◽  
...  

Silage fermentation, a sustainable way to use vegetable waste resources, is a complex process driven by a variety of microorganisms. We used lettuce waste as the main raw material for silage, analyzed changes in the physico-chemical characteristics and bacterial community composition of silage over a 60-day fermentation, identified differentially abundant taxa, predicted the functional profiles of bacterial communities, and determined the associated effects on the quality of silage. The biggest changes occurred in the early stage of silage fermentation. Changes in the physico-chemical characteristics included a decrease in pH and increases in ammonia nitrogen to total nitrogen ratio and lactic acid content. The numbers of lactic acid bacteria (LAB) increased and molds, yeasts and aerobic bacteria decreased. The bacterial communities and their predicted functions on day 0 were clearly different from those on day 7 to day 60. The relative abundances of phylum Firmicutes and genus Lactobacillus increased. Nitrite ammonification and nitrate ammonification were more prevalent after day 0. The differences in the predicted functions were associated with differences in pH and amino acid, protein, carbohydrate, NH3-N, ether extract and crude ash contents.


2019 ◽  
Vol 157 (9-10) ◽  
pp. 684-692
Author(s):  
G. A. Pereira ◽  
E. M. Santos ◽  
G. G. L. Araújo ◽  
J. S. Oliveira ◽  
R. M. A. Pinho ◽  
...  

AbstractThe current study aimed to select the strains of lactic acid bacteria (LAB) isolated from forage cactus plants and silage and assess their effects on silage fermentation and aerobic stability. Forty wild isolates from plant and cactus silage, classified as LAB, were evaluated for metabolite production and identified by 16S ribosomal DNA sequencing. These wild isolates were identified as Lactobacillus plantarum, Weissella cibaria, Weissella confusa and Weissella paramesenteroides and the LAB populations differed among the silage. The use of microbial inoculants did not influence gas or effluent losses in forage cactus silage. The silage inoculated with the microbial strain GP15 showed the highest number of LAB populations. The amounts of water-soluble carbohydrates (WSC) and ammonia nitrogen differed among the silage. The silage inoculated with the GP1 strain presented the highest WSC. Populations of enterobacteria and yeasts and moulds were below the minimum detection limit (<2.0 log cfu/g silage) in all the silage studied. The predominant action of inoculants was to maximize dry matter recovery of the silage, which could be the criterion adopted to select the strains of LAB for use as inoculants in Opuntia silage.


Sign in / Sign up

Export Citation Format

Share Document